Show commands:
SageMath
E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 266910v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
266910.v1 | 266910v1 | \([1, 0, 1, -16199, 1098146]\) | \(-470056203380406889/250217962134840\) | \(-250217962134840\) | \([3]\) | \(1179360\) | \(1.4668\) | \(\Gamma_0(N)\)-optimal |
266910.v2 | 266910v2 | \([1, 0, 1, 128386, -14268688]\) | \(234035413953867370151/223522342029504000\) | \(-223522342029504000\) | \([]\) | \(3538080\) | \(2.0161\) |
Rank
sage: E.rank()
The elliptic curves in class 266910v have rank \(0\).
Complex multiplication
The elliptic curves in class 266910v do not have complex multiplication.Modular form 266910.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.