Properties

Label 266910v2
Conductor 266910266910
Discriminant 2.235×1017-2.235\times 10^{17}
j-invariant 234035413953867370151223522342029504000 \frac{234035413953867370151}{223522342029504000}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+128386x14268688y^2+xy+y=x^3+128386x-14268688 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+128386xz214268688z3y^2z+xyz+yz^2=x^3+128386xz^2-14268688z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+166388877x666219062322y^2=x^3+166388877x-666219062322 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, 128386, -14268688])
 
gp: E = ellinit([1, 0, 1, 128386, -14268688])
 
magma: E := EllipticCurve([1, 0, 1, 128386, -14268688]);
 
oscar: E = elliptic_curve([1, 0, 1, 128386, -14268688])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  266910 266910  = 235731412 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  223522342029504000-223522342029504000 = 12935537313413-1 \cdot 2^{9} \cdot 3^{5} \cdot 5^{3} \cdot 7 \cdot 31^{3} \cdot 41^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  234035413953867370151223522342029504000 \frac{234035413953867370151}{223522342029504000}  = 293553711732333134131576132^{-9} \cdot 3^{-5} \cdot 5^{-3} \cdot 7^{-1} \cdot 17^{3} \cdot 23^{3} \cdot 31^{-3} \cdot 41^{-3} \cdot 15761^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.01614121602814814378463931812.0161412160281481437846393181
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.01614121602814814378463931812.0161412160281481437846393181
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92287366754945110.9228736675494511
Szpiro ratio: σm\sigma_{m} ≈ 3.75376189402062233.7537618940206223

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.171802604809705689540510991440.17180260480970568954051099144
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 15 15  = 151131 1\cdot5\cdot1\cdot1\cdot3\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.57703907214558534310766487162.5770390721455853431076648716
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.577039072L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1718031.00000015122.577039072\displaystyle 2.577039072 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.171803 \cdot 1.000000 \cdot 15}{1^2} \approx 2.577039072

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 266910.2.a.v

qq2+q3+q4q5q6+q7q8+q9+q10+q12+2q13q14q15+q16q18+8q19+O(q20) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} - q^{14} - q^{15} + q^{16} - q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3538080
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I9I_{9} nonsplit multiplicative 1 1 9 9
33 55 I5I_{5} split multiplicative -1 1 5 5
55 11 I3I_{3} nonsplit multiplicative 1 1 3 3
77 11 I1I_{1} split multiplicative -1 1 1 1
3131 33 I3I_{3} split multiplicative -1 1 3 3
4141 11 I3I_{3} nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.2 3.8.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[533821, 6, 533823, 19], [4, 3, 9, 7], [1067635, 6, 1067634, 7], [610081, 6, 762603, 19], [427057, 6, 213531, 19], [26041, 6, 78123, 19], [998761, 6, 861003, 19], [266911, 6, 0, 1], [1, 6, 0, 1], [489338, 578307, 1, 934186], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(1067640)).subgroup(gens)
 
Gens := [[533821, 6, 533823, 19], [4, 3, 9, 7], [1067635, 6, 1067634, 7], [610081, 6, 762603, 19], [427057, 6, 213531, 19], [26041, 6, 78123, 19], [998761, 6, 861003, 19], [266911, 6, 0, 1], [1, 6, 0, 1], [489338, 578307, 1, 934186], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(1067640))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1067640=233573141 1067640 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 , index 1616, genus 00, and generators

(533821653382319),(4397),(1067635610676347),(610081676260319),(427057621353119),(2604167812319),(998761686100319),(266911601),(1601),(4893385783071934186),(34811),(1061)\left(\begin{array}{rr} 533821 & 6 \\ 533823 & 19 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1067635 & 6 \\ 1067634 & 7 \end{array}\right),\left(\begin{array}{rr} 610081 & 6 \\ 762603 & 19 \end{array}\right),\left(\begin{array}{rr} 427057 & 6 \\ 213531 & 19 \end{array}\right),\left(\begin{array}{rr} 26041 & 6 \\ 78123 & 19 \end{array}\right),\left(\begin{array}{rr} 998761 & 6 \\ 861003 & 19 \end{array}\right),\left(\begin{array}{rr} 266911 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 489338 & 578307 \\ 1 & 934186 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1067640])K:=\Q(E[1067640]) is a degree-1096860878650736640000010968608786507366400000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1067640Z)\GL_2(\Z/1067640\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 133455=3573141 133455 = 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41
33 split multiplicative 44 7 7
55 nonsplit multiplicative 66 17794=273141 17794 = 2 \cdot 7 \cdot 31 \cdot 41
77 split multiplicative 88 38130=2353141 38130 = 2 \cdot 3 \cdot 5 \cdot 31 \cdot 41
3131 split multiplicative 3232 8610=235741 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41
4141 nonsplit multiplicative 4242 6510=235731 6510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 266910v consists of 2 curves linked by isogenies of degree 3.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(3)\Q(\sqrt{-3}) Z/3Z\Z/3\Z not in database
33 3.1.1067640.1 Z/2Z\Z/2\Z not in database
33 3.1.11907.1 Z/3Z\Z/3\Z not in database
66 6.0.1216954973271744000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.425329947.3 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.3419565508800.2 Z/6Z\Z/6\Z not in database
99 9.1.4658466548547515629058112000.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.15450049497024747368006083228126647233457361330605011042877685546875.1 Z/9Z\Z/9\Z not in database
1818 18.0.65103931751808608367745669092412956292404819013632000000.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1818 18.0.59885527985568927080348437848457311286109110372280931466346496000000000.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.