Properties

Label 266910w1
Conductor 266910266910
Discriminant 1.216×1019-1.216\times 10^{19}
j-invariant 1724957267289738476435128912161086875000000000 -\frac{17249572672897384764351289}{12161086875000000000}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x35382924x+4809493066y^2+xy+y=x^3-5382924x+4809493066 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x35382924xz2+4809493066z3y^2z+xyz+yz^2=x^3-5382924xz^2+4809493066z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x36976268883x+224412637305582y^2=x^3-6976268883x+224412637305582 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -5382924, 4809493066])
 
gp: E = ellinit([1, 0, 1, -5382924, 4809493066])
 
magma: E := EllipticCurve([1, 0, 1, -5382924, 4809493066]);
 
oscar: E = elliptic_curve([1, 0, 1, -5382924, 4809493066])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  266910 266910  = 235731412 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  12161086875000000000-12161086875000000000 = 1293751373141-1 \cdot 2^{9} \cdot 3^{7} \cdot 5^{13} \cdot 7 \cdot 31 \cdot 41
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1724957267289738476435128912161086875000000000 -\frac{17249572672897384764351289}{12161086875000000000}  = 12937513713114112583803293-1 \cdot 2^{-9} \cdot 3^{-7} \cdot 5^{-13} \cdot 7^{-1} \cdot 31^{-1} \cdot 41^{-1} \cdot 258380329^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.59818197531540479383979515032.5981819753154047938397951503
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.59818197531540479383979515032.5981819753154047938397951503
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95388903009310120.9538890300931012
Szpiro ratio: σm\sigma_{m} ≈ 4.6508680892508854.650868089250885

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.223450413146400282009066582320.22345041314640028200906658232
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 7 7  = 171111 1\cdot7\cdot1\cdot1\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.56415289202480197406346607621.5641528920248019740634660762
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.564152892L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2234501.0000007121.564152892\displaystyle 1.564152892 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.223450 \cdot 1.000000 \cdot 7}{1^2} \approx 1.564152892

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 266910.2.a.w

qq2+q3+q4q5q6+q7q8+q9+q10+q12+2q13q14q15+q16+4q17q18+O(q20) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} - q^{14} - q^{15} + q^{16} + 4 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 11714976
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I9I_{9} nonsplit multiplicative 1 1 9 9
33 77 I7I_{7} split multiplicative -1 1 7 7
55 11 I13I_{13} nonsplit multiplicative 1 1 13 13
77 11 I1I_{1} split multiplicative -1 1 1 1
3131 11 I1I_{1} nonsplit multiplicative 1 1 1 1
4141 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[266911, 2, 0, 1], [1, 1, 1067639, 0], [26041, 2, 26041, 3], [1067639, 2, 1067638, 3], [427057, 2, 427057, 3], [1, 0, 2, 1], [1, 2, 0, 1], [610081, 2, 610081, 3], [998761, 2, 998761, 3], [711761, 2, 711761, 3], [533821, 2, 533821, 3]]
 
GL(2,Integers(1067640)).subgroup(gens)
 
Gens := [[266911, 2, 0, 1], [1, 1, 1067639, 0], [26041, 2, 26041, 3], [1067639, 2, 1067638, 3], [427057, 2, 427057, 3], [1, 0, 2, 1], [1, 2, 0, 1], [610081, 2, 610081, 3], [998761, 2, 998761, 3], [711761, 2, 711761, 3], [533821, 2, 533821, 3]];
 
sub<GL(2,Integers(1067640))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1067640=233573141 1067640 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 , index 22, genus 00, and generators

(266911201),(1110676390),(260412260413),(1067639210676383),(42705724270573),(1021),(1201),(61008126100813),(99876129987613),(71176127117613),(53382125338213)\left(\begin{array}{rr} 266911 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1067639 & 0 \end{array}\right),\left(\begin{array}{rr} 26041 & 2 \\ 26041 & 3 \end{array}\right),\left(\begin{array}{rr} 1067639 & 2 \\ 1067638 & 3 \end{array}\right),\left(\begin{array}{rr} 427057 & 2 \\ 427057 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 610081 & 2 \\ 610081 & 3 \end{array}\right),\left(\begin{array}{rr} 998761 & 2 \\ 998761 & 3 \end{array}\right),\left(\begin{array}{rr} 711761 & 2 \\ 711761 & 3 \end{array}\right),\left(\begin{array}{rr} 533821 & 2 \\ 533821 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1067640])K:=\Q(E[1067640]) is a degree-8774887029205893120000087748870292058931200000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1067640Z)\GL_2(\Z/1067640\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 133455=3573141 133455 = 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41
33 split multiplicative 44 44485=573141 44485 = 5 \cdot 7 \cdot 31 \cdot 41
55 nonsplit multiplicative 66 53382=2373141 53382 = 2 \cdot 3 \cdot 7 \cdot 31 \cdot 41
77 split multiplicative 88 12710=253141 12710 = 2 \cdot 5 \cdot 31 \cdot 41
1313 good 22 53382=2373141 53382 = 2 \cdot 3 \cdot 7 \cdot 31 \cdot 41
3131 nonsplit multiplicative 3232 8610=235741 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41
4141 split multiplicative 4242 6510=235731 6510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 266910w consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1067640.1 Z/2Z\Z/2\Z not in database
66 6.0.1216954973271744000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.