Properties

Label 2700b
Number of curves $2$
Conductor $2700$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 2700b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2700.k1 2700b1 \([0, 0, 0, -16200, 796500]\) \(-5971968/25\) \(-1968300000000\) \([]\) \(5184\) \(1.2140\) \(\Gamma_0(N)\)-optimal
2700.k2 2700b2 \([0, 0, 0, 37800, 4198500]\) \(8429568/15625\) \(-11071687500000000\) \([]\) \(15552\) \(1.7633\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2700b have rank \(0\).

Complex multiplication

The elliptic curves in class 2700b do not have complex multiplication.

Modular form 2700.2.a.b

sage: E.q_eigenform(10)
 
\(q + q^{7} - 6 q^{11} + q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.