Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 2700b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2700.k1 | 2700b1 | \([0, 0, 0, -16200, 796500]\) | \(-5971968/25\) | \(-1968300000000\) | \([]\) | \(5184\) | \(1.2140\) | \(\Gamma_0(N)\)-optimal |
2700.k2 | 2700b2 | \([0, 0, 0, 37800, 4198500]\) | \(8429568/15625\) | \(-11071687500000000\) | \([]\) | \(15552\) | \(1.7633\) |
Rank
sage: E.rank()
The elliptic curves in class 2700b have rank \(0\).
Complex multiplication
The elliptic curves in class 2700b do not have complex multiplication.Modular form 2700.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.