sage:E = EllipticCurve("bv1")
E.isogeny_class()
Elliptic curves in class 270504bv
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
270504.bv3 |
270504bv1 |
[0,0,0,−19074,−584647] |
2725888/1053 |
296462256871248 |
[2] |
655360 |
1.4759
|
Γ0(N)-optimal |
270504.bv2 |
270504bv2 |
[0,0,0,−136119,18915050] |
61918288/1521 |
6851572158802176 |
[2,2] |
1310720 |
1.8225
|
|
270504.bv1 |
270504bv3 |
[0,0,0,−2164899,1226039150] |
62275269892/39 |
702725349620736 |
[2] |
2621440 |
2.1690
|
|
270504.bv4 |
270504bv4 |
[0,0,0,19941,59771558] |
48668/85683 |
−1543887593116756992 |
[2] |
2621440 |
2.1690
|
|
sage:E.rank()
The elliptic curves in class 270504bv have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
13 | 1−T |
17 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
7 |
1+7T2 |
1.7.a
|
11 |
1+11T2 |
1.11.a
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+23T2 |
1.23.a
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 270504bv do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.