Properties

Label 270504bv
Number of curves $4$
Conductor $270504$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bv1")
 
E.isogeny_class()
 

Elliptic curves in class 270504bv

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
270504.bv3 270504bv1 \([0, 0, 0, -19074, -584647]\) \(2725888/1053\) \(296462256871248\) \([2]\) \(655360\) \(1.4759\) \(\Gamma_0(N)\)-optimal
270504.bv2 270504bv2 \([0, 0, 0, -136119, 18915050]\) \(61918288/1521\) \(6851572158802176\) \([2, 2]\) \(1310720\) \(1.8225\)  
270504.bv1 270504bv3 \([0, 0, 0, -2164899, 1226039150]\) \(62275269892/39\) \(702725349620736\) \([2]\) \(2621440\) \(2.1690\)  
270504.bv4 270504bv4 \([0, 0, 0, 19941, 59771558]\) \(48668/85683\) \(-1543887593116756992\) \([2]\) \(2621440\) \(2.1690\)  

Rank

sage: E.rank()
 

The elliptic curves in class 270504bv have rank \(1\).

Complex multiplication

The elliptic curves in class 270504bv do not have complex multiplication.

Modular form 270504.2.a.bv

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.