Properties

Label 272.b
Number of curves 44
Conductor 272272
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 272.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
272.b1 272b3 [0,0,0,1451,21274][0, 0, 0, -1451, 21274] 82483294977/1782483294977/17 6963269632 [4][4] 6464 0.316510.31651  
272.b2 272b2 [0,0,0,91,330][0, 0, 0, -91, 330] 20346417/28920346417/289 11837441183744 [2,2][2, 2] 3232 0.030063-0.030063  
272.b3 272b1 [0,0,0,11,6][0, 0, 0, -11, -6] 35937/1735937/17 6963269632 [2][2] 1616 0.37664-0.37664 Γ0(N)\Gamma_0(N)-optimal
272.b4 272b4 [0,0,0,11,890][0, 0, 0, -11, 890] 35937/83521-35937/83521 342102016-342102016 [4][4] 6464 0.316510.31651  

Rank

sage: E.rank()
 

The elliptic curves in class 272.b have rank 11.

Complex multiplication

The elliptic curves in class 272.b do not have complex multiplication.

Modular form 272.2.a.b

sage: E.q_eigenform(10)
 
q2q54q73q92q13+q17+4q19+O(q20)q - 2 q^{5} - 4 q^{7} - 3 q^{9} - 2 q^{13} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.