Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 272.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
272.b1 | 272b3 | \([0, 0, 0, -1451, 21274]\) | \(82483294977/17\) | \(69632\) | \([4]\) | \(64\) | \(0.31651\) | |
272.b2 | 272b2 | \([0, 0, 0, -91, 330]\) | \(20346417/289\) | \(1183744\) | \([2, 2]\) | \(32\) | \(-0.030063\) | |
272.b3 | 272b1 | \([0, 0, 0, -11, -6]\) | \(35937/17\) | \(69632\) | \([2]\) | \(16\) | \(-0.37664\) | \(\Gamma_0(N)\)-optimal |
272.b4 | 272b4 | \([0, 0, 0, -11, 890]\) | \(-35937/83521\) | \(-342102016\) | \([4]\) | \(64\) | \(0.31651\) |
Rank
sage: E.rank()
The elliptic curves in class 272.b have rank \(1\).
Complex multiplication
The elliptic curves in class 272.b do not have complex multiplication.Modular form 272.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.