Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-987844x+377820686\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-987844xz^2+377820686z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1280245203x+17631442673262\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(616, 1466)$ | $0$ | $6$ |
Integral points
\( \left(574, -277\right) \), \( \left(574, -298\right) \), \( \left(616, 1466\right) \), \( \left(616, -2083\right) \)
Invariants
Conductor: | $N$ | = | \( 2730 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $5290068420$ | = | $2^{2} \cdot 3^{3} \cdot 5 \cdot 7^{3} \cdot 13^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{106607603143751752938169}{5290068420} \) | = | $2^{-2} \cdot 3^{-3} \cdot 5^{-1} \cdot 7^{-3} \cdot 13^{-4} \cdot 83^{3} \cdot 397^{3} \cdot 1439^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7886207368094455848556051615$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7886207368094455848556051615$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.0177584325921658$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.701600169904371$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.73833973806501449043200739732$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 2\cdot3\cdot1\cdot3\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $1.4766794761300289808640147946 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 1.476679476 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.738340 \cdot 1.000000 \cdot 72}{6^2} \approx 1.476679476$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 27648 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 3201 & 5008 \\ 10916 & 2189 \end{array}\right),\left(\begin{array}{rr} 8752 & 3 \\ 8277 & 10834 \end{array}\right),\left(\begin{array}{rr} 16 & 5481 \\ 1535 & 3266 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 4201 & 24 \\ 6732 & 289 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 9614 & 1691 \end{array}\right),\left(\begin{array}{rr} 8191 & 24 \\ 8190 & 1 \end{array}\right),\left(\begin{array}{rr} 10897 & 24 \\ 10896 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4696 & 3 \\ 1101 & 10834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$4869303828480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 105 = 3 \cdot 5 \cdot 7 \) |
$3$ | split multiplicative | $4$ | \( 130 = 2 \cdot 5 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 2730n
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/12\Z\) | not in database |
$2$ | \(\Q(\sqrt{35}) \) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{35})\) | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$6$ | 6.0.7711470000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.8.6529455878400.1 | \(\Z/24\Z\) | not in database |
$8$ | deg 8 | \(\Z/24\Z\) | not in database |
$9$ | 9.3.482148111579637230000.3 | \(\Z/18\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$18$ | 18.6.6727734527155447821014097713692491021562500000000.3 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
$18$ | 18.6.102835874045868088256088608224968184627200000000.2 | \(\Z/36\Z\) | not in database |
$18$ | 18.6.4082488981219068781462776923745843440640000000000000.1 | \(\Z/36\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 13 |
---|---|---|---|---|---|
Reduction type | nonsplit | split | nonsplit | split | split |
$\lambda$-invariant(s) | 3 | 1 | 0 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.