Properties

Label 273600ln
Number of curves $2$
Conductor $273600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ln1")
 
E.isogeny_class()
 

Elliptic curves in class 273600ln

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
273600.ln2 273600ln1 \([0, 0, 0, 180, -32400]\) \(27/19\) \(-453869568000\) \([2]\) \(262144\) \(0.91580\) \(\Gamma_0(N)\)-optimal
273600.ln1 273600ln2 \([0, 0, 0, -14220, -637200]\) \(13312053/361\) \(8623521792000\) \([2]\) \(524288\) \(1.2624\)  

Rank

sage: E.rank()
 

The elliptic curves in class 273600ln have rank \(1\).

Complex multiplication

The elliptic curves in class 273600ln do not have complex multiplication.

Modular form 273600.2.a.ln

sage: E.q_eigenform(10)
 
\(q + 2 q^{7} - 4 q^{11} + 2 q^{13} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.