Properties

Label 273600s
Number of curves 22
Conductor 273600273600
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 273600s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
273600.s2 273600s1 [0,0,0,4200,43000][0, 0, 0, 4200, -43000] 702464/475702464/475 5540400000000-5540400000000 [2][2] 589824589824 1.13391.1339 Γ0(N)\Gamma_0(N)-optimal
273600.s1 273600s2 [0,0,0,18300,358000][0, 0, 0, -18300, -358000] 3631696/18053631696/1805 336856320000000336856320000000 [2][2] 11796481179648 1.48051.4805  

Rank

sage: E.rank()
 

The elliptic curves in class 273600s have rank 11.

Complex multiplication

The elliptic curves in class 273600s do not have complex multiplication.

Modular form 273600.2.a.s

sage: E.q_eigenform(10)
 
q4q74q11+6q17+q19+O(q20)q - 4 q^{7} - 4 q^{11} + 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.