Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 27380c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
27380.e2 | 27380c1 | \([0, 1, 0, -248245, -18550457]\) | \(2575826944/1266325\) | \(831755134688492800\) | \([]\) | \(196992\) | \(2.1317\) | \(\Gamma_0(N)\)-optimal |
27380.e1 | 27380c2 | \([0, 1, 0, -16457205, -25702458025]\) | \(750484394082304/578125\) | \(379727508532000000\) | \([]\) | \(590976\) | \(2.6810\) |
Rank
sage: E.rank()
The elliptic curves in class 27380c have rank \(1\).
Complex multiplication
The elliptic curves in class 27380c do not have complex multiplication.Modular form 27380.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.