Properties

Label 27380c
Number of curves $2$
Conductor $27380$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 27380c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27380.e2 27380c1 \([0, 1, 0, -248245, -18550457]\) \(2575826944/1266325\) \(831755134688492800\) \([]\) \(196992\) \(2.1317\) \(\Gamma_0(N)\)-optimal
27380.e1 27380c2 \([0, 1, 0, -16457205, -25702458025]\) \(750484394082304/578125\) \(379727508532000000\) \([]\) \(590976\) \(2.6810\)  

Rank

sage: E.rank()
 

The elliptic curves in class 27380c have rank \(1\).

Complex multiplication

The elliptic curves in class 27380c do not have complex multiplication.

Modular form 27380.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - q^{7} - 2 q^{9} - 3 q^{11} + 4 q^{13} + q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.