Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 275080m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
275080.m1 | 275080m1 | \([0, -1, 0, -10756, 426276]\) | \(3631696/65\) | \(2463317192960\) | \([2]\) | \(402688\) | \(1.1734\) | \(\Gamma_0(N)\)-optimal |
275080.m2 | 275080m2 | \([0, -1, 0, -176, 1217660]\) | \(-4/4225\) | \(-640462470169600\) | \([2]\) | \(805376\) | \(1.5200\) |
Rank
sage: E.rank()
The elliptic curves in class 275080m have rank \(0\).
Complex multiplication
The elliptic curves in class 275080m do not have complex multiplication.Modular form 275080.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.