Properties

Label 275080m
Number of curves 22
Conductor 275080275080
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Elliptic curves in class 275080m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
275080.m1 275080m1 [0,1,0,10756,426276][0, -1, 0, -10756, 426276] 3631696/653631696/65 24633171929602463317192960 [2][2] 402688402688 1.17341.1734 Γ0(N)\Gamma_0(N)-optimal
275080.m2 275080m2 [0,1,0,176,1217660][0, -1, 0, -176, 1217660] 4/4225-4/4225 640462470169600-640462470169600 [2][2] 805376805376 1.52001.5200  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 275080m have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
551+T1 + T
13131T1 - T
232311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+2T+19T2 1 + 2 T + 19 T^{2} 1.19.c
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 275080m do not have complex multiplication.

Modular form 275080.2.a.m

Copy content sage:E.q_eigenform(10)
 
q+2q3q5+q92q11+q132q152q172q19+O(q20)q + 2 q^{3} - q^{5} + q^{9} - 2 q^{11} + q^{13} - 2 q^{15} - 2 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.