sage:E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 275080m
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
275080.m1 |
275080m1 |
[0,−1,0,−10756,426276] |
3631696/65 |
2463317192960 |
[2] |
402688 |
1.1734
|
Γ0(N)-optimal |
275080.m2 |
275080m2 |
[0,−1,0,−176,1217660] |
−4/4225 |
−640462470169600 |
[2] |
805376 |
1.5200
|
|
sage:E.rank()
The elliptic curves in class 275080m have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1+T |
13 | 1−T |
23 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−2T+3T2 |
1.3.ac
|
7 |
1+7T2 |
1.7.a
|
11 |
1+2T+11T2 |
1.11.c
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+2T+19T2 |
1.19.c
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 275080m do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.