Properties

Label 277200.i1
Conductor 277200277200
Discriminant 8.748×10178.748\times 10^{17}
j-invariant 42744011769892343775203 \frac{4274401176989}{2343775203}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3243435x+10591450y^2=x^3-243435x+10591450 Copy content Toggle raw display (homogenize, simplify)
y2z=x3243435xz2+10591450z3y^2z=x^3-243435xz^2+10591450z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3243435x+10591450y^2=x^3-243435x+10591450 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -243435, 10591450])
 
gp: E = ellinit([0, 0, 0, -243435, 10591450])
 
magma: E := EllipticCurve([0, 0, 0, -243435, 10591450]);
 
oscar: E = elliptic_curve([0, 0, 0, -243435, 10591450])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(470,0)(470, 0)0022

Integral points

(470,0) \left(470, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  277200 277200  = 2432527112^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  874809406969344000874809406969344000 = 2123953721162^{12} \cdot 3^{9} \cdot 5^{3} \cdot 7^{2} \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  42744011769892343775203 \frac{4274401176989}{2343775203}  = 33721161622933^{-3} \cdot 7^{-2} \cdot 11^{-6} \cdot 16229^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.13342362669787456408708534972.1334236266978745640870853497
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.488610823695349315322040776480.48861082369534931532204077648
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97914603202128380.9791460320212838
Szpiro ratio: σm\sigma_{m} ≈ 3.89558667579072363.8955866757907236

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.244246655804020978320205370950.24424665580402097832020537095
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2\cdot2\cdot2\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.95397324643216782656164296761.9539732464321678265616429676
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.953973246L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2442471.00000032221.953973246\displaystyle 1.953973246 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.244247 \cdot 1.000000 \cdot 32}{2^2} \approx 1.953973246

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 277200.2.a.i

qq7q114q132q17+O(q20) q - q^{7} - q^{11} - 4 q^{13} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2949120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I4I_{4}^{*} additive -1 4 12 0
33 22 I3I_{3}^{*} additive -1 2 9 3
55 22 IIIIII additive -1 2 3 0
77 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1111 22 I6I_{6} nonsplit multiplicative 1 1 6 6

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1156, 3469, 3465, 1156], [661, 4, 1322, 9], [1, 2, 2, 5], [1, 4, 0, 1], [3082, 1, 3079, 0], [2521, 4, 422, 9], [928, 1, 923, 0], [1, 0, 4, 1], [4617, 4, 4616, 5], [3, 4, 8, 11]]
 
GL(2,Integers(4620)).subgroup(gens)
 
Gens := [[1156, 3469, 3465, 1156], [661, 4, 1322, 9], [1, 2, 2, 5], [1, 4, 0, 1], [3082, 1, 3079, 0], [2521, 4, 422, 9], [928, 1, 923, 0], [1, 0, 4, 1], [4617, 4, 4616, 5], [3, 4, 8, 11]];
 
sub<GL(2,Integers(4620))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4620=2235711 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 , index 1212, genus 00, and generators

(1156346934651156),(661413229),(1225),(1401),(3082130790),(252144229),(92819230),(1041),(4617446165),(34811)\left(\begin{array}{rr} 1156 & 3469 \\ 3465 & 1156 \end{array}\right),\left(\begin{array}{rr} 661 & 4 \\ 1322 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3082 & 1 \\ 3079 & 0 \end{array}\right),\left(\begin{array}{rr} 2521 & 4 \\ 422 & 9 \end{array}\right),\left(\begin{array}{rr} 928 & 1 \\ 923 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 4617 & 4 \\ 4616 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4620])K:=\Q(E[4620]) is a degree-49049763840004904976384000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4620Z)\GL_2(\Z/4620\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 45=325 45 = 3^{2} \cdot 5
33 additive 66 2800=24527 2800 = 2^{4} \cdot 5^{2} \cdot 7
55 additive 1010 11088=2432711 11088 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 11
77 nonsplit multiplicative 88 39600=24325211 39600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11
1111 nonsplit multiplicative 1212 25200=2432527 25200 = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 277200.i consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 5775.s1, its twist by 1212.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.4.8893500.4 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.8.11389585284000000.2 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.21003948000000.3 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.