E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 277200.x
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
277200.x1 |
277200x3 |
[0,0,0,−958005075,11413000287250] |
2084105208962185000201/31185000 |
1454967360000000000 |
[2] |
56623104 |
3.4887
|
|
277200.x2 |
277200x4 |
[0,0,0,−64917075,146529855250] |
648474704552553481/176469171805080 |
8233345679737812480000000 |
[2] |
56623104 |
3.4887
|
|
277200.x3 |
277200x2 |
[0,0,0,−59877075,178317135250] |
508859562767519881/62240270400 |
2903882055782400000000 |
[2,2] |
28311552 |
3.1421
|
|
277200.x4 |
277200x1 |
[0,0,0,−3429075,3271887250] |
−95575628340361/43812679680 |
−2044124383150080000000 |
[2] |
14155776 |
2.7956
|
Γ0(N)-optimal |
The elliptic curves in class 277200.x have
rank 1.
The elliptic curves in class 277200.x do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.