Properties

Label 27720j
Number of curves 44
Conductor 2772027720
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 27720j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27720.t4 27720j1 [0,0,0,423,8262][0, 0, 0, -423, -8262] 44851536/132055-44851536/132055 24644632320-24644632320 [2][2] 1638416384 0.680900.68090 Γ0(N)\Gamma_0(N)-optimal
27720.t3 27720j2 [0,0,0,9243,341658][0, 0, 0, -9243, -341658] 116986321764/148225116986321764/148225 110649369600110649369600 [2,2][2, 2] 3276832768 1.02751.0275  
27720.t2 27720j3 [0,0,0,11763,140562][0, 0, 0, -11763, -140562] 120564797922/64054375120564797922/64054375 9563266944000095632669440000 [2][2] 6553665536 1.37401.3740  
27720.t1 27720j4 [0,0,0,147843,21880098][0, 0, 0, -147843, -21880098] 239369344910082/385239369344910082/385 574801920574801920 [2][2] 6553665536 1.37401.3740  

Rank

sage: E.rank()
 

The elliptic curves in class 27720j have rank 00.

Complex multiplication

The elliptic curves in class 27720j do not have complex multiplication.

Modular form 27720.2.a.j

sage: E.q_eigenform(10)
 
qq5+q7+q112q132q17+O(q20)q - q^{5} + q^{7} + q^{11} - 2 q^{13} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.