E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 27720j
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
27720.t4 |
27720j1 |
[0,0,0,−423,−8262] |
−44851536/132055 |
−24644632320 |
[2] |
16384 |
0.68090
|
Γ0(N)-optimal |
27720.t3 |
27720j2 |
[0,0,0,−9243,−341658] |
116986321764/148225 |
110649369600 |
[2,2] |
32768 |
1.0275
|
|
27720.t2 |
27720j3 |
[0,0,0,−11763,−140562] |
120564797922/64054375 |
95632669440000 |
[2] |
65536 |
1.3740
|
|
27720.t1 |
27720j4 |
[0,0,0,−147843,−21880098] |
239369344910082/385 |
574801920 |
[2] |
65536 |
1.3740
|
|
The elliptic curves in class 27720j have
rank 0.
The elliptic curves in class 27720j do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.