Properties

Label 277248m
Number of curves $2$
Conductor $277248$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 277248m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
277248.m2 277248m1 \([0, 1, 0, -1203, 68697]\) \(-8000/81\) \(-1951086776832\) \([2]\) \(442368\) \(1.0405\) \(\Gamma_0(N)\)-optimal
277248.m1 277248m2 \([0, 1, 0, -33693, 2362491]\) \(2744000/9\) \(13874394857472\) \([2]\) \(884736\) \(1.3871\)  

Rank

sage: E.rank()
 

The elliptic curves in class 277248m have rank \(0\).

Complex multiplication

The elliptic curves in class 277248m do not have complex multiplication.

Modular form 277248.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.