sage:E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 277248m
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
277248.m2 |
277248m1 |
[0,1,0,−1203,68697] |
−8000/81 |
−1951086776832 |
[2] |
442368 |
1.0405
|
Γ0(N)-optimal |
277248.m1 |
277248m2 |
[0,1,0,−33693,2362491] |
2744000/9 |
13874394857472 |
[2] |
884736 |
1.3871
|
|
sage:E.rank()
The elliptic curves in class 277248m have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+5T2 |
1.5.a
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+2T+17T2 |
1.17.c
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1+8T+29T2 |
1.29.i
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 277248m do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.