Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 2790.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2790.l1 | 2790j1 | \([1, -1, 0, -207459, -36507587]\) | \(-1354547383894636849/8173828125000\) | \(-5958720703125000\) | \([]\) | \(37440\) | \(1.8665\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 2790.l1 has rank \(1\).
Complex multiplication
The elliptic curves in class 2790.l do not have complex multiplication.Modular form 2790.2.a.l
sage: E.q_eigenform(10)