Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 27a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
27.a3 | 27a1 | \([0, 0, 1, 0, -7]\) | \(0\) | \(-19683\) | \([3]\) | \(1\) | \(-0.49716\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
27.a1 | 27a2 | \([0, 0, 1, -270, -1708]\) | \(-12288000\) | \(-177147\) | \([]\) | \(3\) | \(0.052148\) | \(-27\) | |
27.a4 | 27a3 | \([0, 0, 1, 0, 0]\) | \(0\) | \(-27\) | \([3]\) | \(3\) | \(-1.0465\) | \(-3\) | |
27.a2 | 27a4 | \([0, 0, 1, -30, 63]\) | \(-12288000\) | \(-243\) | \([3]\) | \(9\) | \(-0.49716\) | \(-27\) |
Rank
sage: E.rank()
The elliptic curves in class 27a have rank \(0\).
Complex multiplication
Each elliptic curve in class 27a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 27.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 3 & 9 \\ 3 & 1 & 9 & 27 \\ 3 & 9 & 1 & 3 \\ 9 & 27 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.