Properties

Label 2800d
Number of curves $1$
Conductor $2800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 2800d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.bb1 2800d1 \([0, -1, 0, -28, 147]\) \(-6288640/16807\) \(-6722800\) \([]\) \(480\) \(-0.0024397\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2800d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2800d do not have complex multiplication.

Modular form 2800.2.a.d

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{7} + q^{9} - q^{11} - 4 q^{13} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display