Properties

Label 2800o
Number of curves 44
Conductor 28002800
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 2800o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.m4 2800o1 [0,0,0,925,17250][0, 0, 0, 925, 17250] 1367631/28001367631/2800 179200000000-179200000000 [2][2] 23042304 0.843710.84371 Γ0(N)\Gamma_0(N)-optimal
2800.m3 2800o2 [0,0,0,7075,185250][0, 0, 0, -7075, 185250] 611960049/122500611960049/122500 78400000000007840000000000 [2,2][2, 2] 46084608 1.19031.1903  
2800.m2 2800o3 [0,0,0,35075,2362750][0, 0, 0, -35075, -2362750] 74565301329/546875074565301329/5468750 350000000000000350000000000000 [2][2] 92169216 1.53691.5369  
2800.m1 2800o4 [0,0,0,107075,13485250][0, 0, 0, -107075, 13485250] 2121328796049/1200502121328796049/120050 76832000000007683200000000 [2][2] 92169216 1.53691.5369  

Rank

sage: E.rank()
 

The elliptic curves in class 2800o have rank 00.

Complex multiplication

The elliptic curves in class 2800o do not have complex multiplication.

Modular form 2800.2.a.o

sage: E.q_eigenform(10)
 
qq73q94q11+6q132q17+O(q20)q - q^{7} - 3 q^{9} - 4 q^{11} + 6 q^{13} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.