E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 2800o
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2800.m4 |
2800o1 |
[0,0,0,925,17250] |
1367631/2800 |
−179200000000 |
[2] |
2304 |
0.84371
|
Γ0(N)-optimal |
2800.m3 |
2800o2 |
[0,0,0,−7075,185250] |
611960049/122500 |
7840000000000 |
[2,2] |
4608 |
1.1903
|
|
2800.m2 |
2800o3 |
[0,0,0,−35075,−2362750] |
74565301329/5468750 |
350000000000000 |
[2] |
9216 |
1.5369
|
|
2800.m1 |
2800o4 |
[0,0,0,−107075,13485250] |
2121328796049/120050 |
7683200000000 |
[2] |
9216 |
1.5369
|
|
The elliptic curves in class 2800o have
rank 0.
The elliptic curves in class 2800o do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.