Show commands:
SageMath
E = EllipticCurve("w1")
E.isogeny_class()
Elliptic curves in class 2800w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2800.e2 | 2800w1 | \([0, 1, 0, 2, 3]\) | \(1280/7\) | \(-2800\) | \([]\) | \(144\) | \(-0.65649\) | \(\Gamma_0(N)\)-optimal |
2800.e1 | 2800w2 | \([0, 1, 0, -98, 343]\) | \(-262885120/343\) | \(-137200\) | \([]\) | \(432\) | \(-0.10718\) |
Rank
sage: E.rank()
The elliptic curves in class 2800w have rank \(1\).
Complex multiplication
The elliptic curves in class 2800w do not have complex multiplication.Modular form 2800.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.