Properties

Label 2800w
Number of curves 22
Conductor 28002800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 2800w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.e2 2800w1 [0,1,0,2,3][0, 1, 0, 2, 3] 1280/71280/7 2800-2800 [][] 144144 0.65649-0.65649 Γ0(N)\Gamma_0(N)-optimal
2800.e1 2800w2 [0,1,0,98,343][0, 1, 0, -98, 343] 262885120/343-262885120/343 137200-137200 [][] 432432 0.10718-0.10718  

Rank

sage: E.rank()
 

The elliptic curves in class 2800w have rank 11.

Complex multiplication

The elliptic curves in class 2800w do not have complex multiplication.

Modular form 2800.2.a.w

sage: E.q_eigenform(10)
 
q2q3+q7+q93q11+4q132q19+O(q20)q - 2 q^{3} + q^{7} + q^{9} - 3 q^{11} + 4 q^{13} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.