Properties

Label 2800w1
Conductor 28002800
Discriminant 2800-2800
j-invariant 12807 \frac{1280}{7}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+2x+3y^2=x^3+x^2+2x+3 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+2xz2+3z3y^2z=x^3+x^2z+2xz^2+3z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+135x+1755y^2=x^3+135x+1755 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 2, 3])
 
gp: E = ellinit([0, 1, 0, 2, 3])
 
magma: E := EllipticCurve([0, 1, 0, 2, 3]);
 
oscar: E = elliptic_curve([0, 1, 0, 2, 3])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,1)(-1, 1)0.732727436597867631370912911770.73272743659786763137091291177\infty

Integral points

(1,±1)(-1,\pm 1) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  2800 2800  = 245272^{4} \cdot 5^{2} \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2800-2800 = 124527-1 \cdot 2^{4} \cdot 5^{2} \cdot 7
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  12807 \frac{1280}{7}  = 285712^{8} \cdot 5 \cdot 7^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.65648594950675891295374249665-0.65648594950675891295374249665
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1557746617657574118596130927-1.1557746617657574118596130927
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.66250117878842160.6625011787884216
Szpiro ratio: σm\sigma_{m} ≈ 1.9251007959567251.925100795956725

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.732727436597867631370912911770.73272743659786763137091291177
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.26937542360631197021160831223.2693754236063119702116083122
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.39556107341512058392304090842.3955610734151205839230409084
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.395561073L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.2693750.7327271122.395561073\displaystyle 2.395561073 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.269375 \cdot 0.732727 \cdot 1}{1^2} \approx 2.395561073

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2800.2.a.e

q2q3+q7+q93q11+4q132q19+O(q20) q - 2 q^{3} + q^{7} + q^{9} - 3 q^{11} + 4 q^{13} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 144
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive -1 4 4 0
55 11 IIII additive 1 2 2 0
77 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[215, 414, 216, 413], [3, 4, 8, 11], [4, 3, 9, 7], [36, 181, 175, 141], [1, 0, 6, 1], [171, 2, 10, 7], [389, 414, 327, 401], [209, 0, 0, 419], [415, 6, 414, 7], [1, 6, 0, 1]]
 
GL(2,Integers(420)).subgroup(gens)
 
Gens := [[215, 414, 216, 413], [3, 4, 8, 11], [4, 3, 9, 7], [36, 181, 175, 141], [1, 0, 6, 1], [171, 2, 10, 7], [389, 414, 327, 401], [209, 0, 0, 419], [415, 6, 414, 7], [1, 6, 0, 1]];
 
sub<GL(2,Integers(420))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 420=22357 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 , index 1616, genus 00, and generators

(215414216413),(34811),(4397),(36181175141),(1061),(1712107),(389414327401),(20900419),(41564147),(1601)\left(\begin{array}{rr} 215 & 414 \\ 216 & 413 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 36 & 181 \\ 175 & 141 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 171 & 2 \\ 10 & 7 \end{array}\right),\left(\begin{array}{rr} 389 & 414 \\ 327 & 401 \end{array}\right),\left(\begin{array}{rr} 209 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 415 & 6 \\ 414 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[420])K:=\Q(E[420]) is a degree-278691840278691840 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/420Z)\GL_2(\Z/420\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 175=527 175 = 5^{2} \cdot 7
55 additive 1010 112=247 112 = 2^{4} \cdot 7
77 split multiplicative 88 400=2452 400 = 2^{4} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 2800w consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 700b1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{-5}) Z/3Z\Z/3\Z not in database
33 3.1.175.1 Z/2Z\Z/2\Z not in database
66 6.0.214375.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.51861600000.10 Z/3Z\Z/3\Z not in database
66 6.0.9800000.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.4705960000000000.3 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.1143501835472736768000000000000000.2 Z/9Z\Z/9\Z not in database
1818 18.2.6834925948358075904000000000000000.1 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord add split ord ord ss ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 3 - 2 1 1 1,1 1 1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 - 0 0 0 0,0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.