Properties

Label 281775bz
Number of curves $8$
Conductor $281775$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 281775bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
281775.bz6 281775bz1 \([1, 0, 1, -794901, 272708323]\) \(147281603041/5265\) \(1985692199765625\) \([2]\) \(2949120\) \(2.0244\) \(\Gamma_0(N)\)-optimal
281775.bz5 281775bz2 \([1, 0, 1, -831026, 246553823]\) \(168288035761/27720225\) \(10454669431766015625\) \([2, 2]\) \(5898240\) \(2.3710\)  
281775.bz7 281775bz3 \([1, 0, 1, 1517099, 1387742573]\) \(1023887723039/2798036865\) \(-1055278248335643515625\) \([2]\) \(11796480\) \(2.7176\)  
281775.bz4 281775bz4 \([1, 0, 1, -3757151, -2568378427]\) \(15551989015681/1445900625\) \(545320720360634765625\) \([2, 2]\) \(11796480\) \(2.7176\)  
281775.bz8 281775bz5 \([1, 0, 1, 4370974, -12159565927]\) \(24487529386319/183539412225\) \(-69221800418755953515625\) \([2]\) \(23592960\) \(3.0642\)  
281775.bz2 281775bz6 \([1, 0, 1, -58703276, -173121150427]\) \(59319456301170001/594140625\) \(224079848931884765625\) \([2, 2]\) \(23592960\) \(3.0642\)  
281775.bz3 281775bz7 \([1, 0, 1, -57294401, -181825180177]\) \(-55150149867714721/5950927734375\) \(-2244389512538909912109375\) \([2]\) \(47185920\) \(3.4107\)  
281775.bz1 281775bz8 \([1, 0, 1, -939250151, -11079574744177]\) \(242970740812818720001/24375\) \(9193019443359375\) \([2]\) \(47185920\) \(3.4107\)  

Rank

sage: E.rank()
 

The elliptic curves in class 281775bz have rank \(0\).

Complex multiplication

The elliptic curves in class 281775bz do not have complex multiplication.

Modular form 281775.2.a.bz

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{6} - 3 q^{8} + q^{9} - 4 q^{11} - q^{12} - q^{13} - q^{16} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 8 & 8 \\ 8 & 4 & 8 & 2 & 4 & 1 & 2 & 2 \\ 16 & 8 & 16 & 4 & 8 & 2 & 1 & 4 \\ 16 & 8 & 16 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.