Properties

Label 28224fv6
Conductor 2822428224
Discriminant 1.012×10141.012\times 10^{14}
j-invariant 30656171549 \frac{3065617154}{9}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3677964x+214860688y^2=x^3-677964x+214860688 Copy content Toggle raw display (homogenize, simplify)
y2z=x3677964xz2+214860688z3y^2z=x^3-677964xz^2+214860688z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3677964x+214860688y^2=x^3-677964x+214860688 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -677964, 214860688])
 
gp: E = ellinit([0, 0, 0, -677964, 214860688])
 
magma: E := EllipticCurve([0, 0, 0, -677964, 214860688]);
 
oscar: E = elliptic_curve([0, 0, 0, -677964, 214860688])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(476,0)(476, 0)0022

Integral points

(476,0) \left(476, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  28224 28224  = 2632722^{6} \cdot 3^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  101173833105408101173833105408 = 21738762^{17} \cdot 3^{8} \cdot 7^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  30656171549 \frac{3065617154}{9}  = 232115332 \cdot 3^{-2} \cdot 1153^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.91662970362177218971713649551.9166297036217721897171364955
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.58759002103319516354090800008-0.58759002103319516354090800008
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.21058795940553951.2105879594055395
Szpiro ratio: σm\sigma_{m} ≈ 5.0638677053376135.063867705337613

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.520233853894737231768285204500.52023385389473723176828520450
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.08093541557894892707314081802.0809354155789489270731408180
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.080935416L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5202341.00000016222.080935416\displaystyle 2.080935416 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.520234 \cdot 1.000000 \cdot 16}{2^2} \approx 2.080935416

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   28224.2.a.et

q+2q54q112q13+2q17+4q19+O(q20) q + 2 q^{5} - 4 q^{11} - 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 196608
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I7I_{7}^{*} additive -1 6 17 0
33 22 I2I_{2}^{*} additive -1 2 8 2
77 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.210

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5, 4, 332, 333], [125, 224, 42, 251], [1, 16, 0, 1], [15, 2, 238, 323], [95, 0, 0, 335], [307, 224, 224, 27], [188, 203, 105, 62], [321, 16, 320, 17], [1, 0, 16, 1]]
 
GL(2,Integers(336)).subgroup(gens)
 
Gens := [[5, 4, 332, 333], [125, 224, 42, 251], [1, 16, 0, 1], [15, 2, 238, 323], [95, 0, 0, 335], [307, 224, 224, 27], [188, 203, 105, 62], [321, 16, 320, 17], [1, 0, 16, 1]];
 
sub<GL(2,Integers(336))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 336=2437 336 = 2^{4} \cdot 3 \cdot 7 , index 192192, genus 11, and generators

(54332333),(12522442251),(11601),(152238323),(9500335),(30722422427),(18820310562),(3211632017),(10161)\left(\begin{array}{rr} 5 & 4 \\ 332 & 333 \end{array}\right),\left(\begin{array}{rr} 125 & 224 \\ 42 & 251 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 238 & 323 \end{array}\right),\left(\begin{array}{rr} 95 & 0 \\ 0 & 335 \end{array}\right),\left(\begin{array}{rr} 307 & 224 \\ 224 & 27 \end{array}\right),\left(\begin{array}{rr} 188 & 203 \\ 105 & 62 \end{array}\right),\left(\begin{array}{rr} 321 & 16 \\ 320 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[336])K:=\Q(E[336]) is a degree-1238630412386304 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/336Z)\GL_2(\Z/336\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 441=3272 441 = 3^{2} \cdot 7^{2}
33 additive 88 3136=2672 3136 = 2^{6} \cdot 7^{2}
77 additive 2626 576=2632 576 = 2^{6} \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 28224fv consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 24a5, its twist by 168-168.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(42)\Q(\sqrt{42}) Z/4Z\Z/4\Z not in database
22 Q(21)\Q(\sqrt{21}) Z/4Z\Z/4\Z not in database
44 Q(2,21)\Q(\sqrt{2}, \sqrt{21}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(3,14)\Q(\sqrt{3}, \sqrt{14}) Z/8Z\Z/8\Z not in database
44 Q(6,7)\Q(\sqrt{6}, \sqrt{7}) Z/8Z\Z/8\Z not in database
88 8.0.3262849744896.70 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.815712436224.25 Z/8Z\Z/8\Z not in database
88 8.8.12745506816.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.8.7341411926016.2 Z/16Z\Z/16\Z not in database
88 8.2.27874423406592.2 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 7
Reduction type add add add
λ\lambda-invariant(s) - - -
μ\mu-invariant(s) - - -

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.