E = EllipticCurve("gt1")
E.isogeny_class()
Elliptic curves in class 283920.gt
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
283920.gt1 |
283920gt4 |
[0,1,0,−45626000,−118636695852] |
531301262949272089/4740474375 |
93722068490319360000 |
[2] |
20643840 |
2.9980
|
|
283920.gt2 |
283920gt2 |
[0,1,0,−2916320,−1765927500] |
138742439989609/12224619225 |
241688174988505190400 |
[2,2] |
10321920 |
2.6515
|
|
283920.gt3 |
283920gt1 |
[0,1,0,−631440,161597268] |
1408317602329/242911305 |
4802504594127851520 |
[2] |
5160960 |
2.3049
|
Γ0(N)-optimal |
283920.gt4 |
283920gt3 |
[0,1,0,3235280,−8220186220] |
189425802193991/1586486902455 |
−31365813285486248325120 |
[4] |
20643840 |
2.9980
|
|
The elliptic curves in class 283920.gt have
rank 0.
The elliptic curves in class 283920.gt do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.