Properties

Label 285.b
Number of curves 22
Conductor 285285
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 285.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
285.b1 285b2 [1,1,0,93,378][1, 1, 0, -93, -378] 90458382169/267187590458382169/2671875 26718752671875 [2][2] 4848 0.0103400.010340  
285.b2 285b1 [1,1,0,2,17][1, 1, 0, 2, -17] 357911/135375357911/135375 135375-135375 [2][2] 2424 0.33623-0.33623 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 285.b have rank 11.

Complex multiplication

The elliptic curves in class 285.b do not have complex multiplication.

Modular form 285.2.a.b

sage: E.q_eigenform(10)
 
q+q2q3q4q5q62q73q8+q9q102q11+q124q132q14+q15q16+2q17+q18q19+O(q20)q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - 2 q^{7} - 3 q^{8} + q^{9} - q^{10} - 2 q^{11} + q^{12} - 4 q^{13} - 2 q^{14} + q^{15} - q^{16} + 2 q^{17} + q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.