Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 285.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
285.b1 | 285b2 | \([1, 1, 0, -93, -378]\) | \(90458382169/2671875\) | \(2671875\) | \([2]\) | \(48\) | \(0.010340\) | |
285.b2 | 285b1 | \([1, 1, 0, 2, -17]\) | \(357911/135375\) | \(-135375\) | \([2]\) | \(24\) | \(-0.33623\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 285.b have rank \(1\).
Complex multiplication
The elliptic curves in class 285.b do not have complex multiplication.Modular form 285.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.