sage:E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 2850.x
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2850.x1 |
2850ba1 |
[1,0,0,−2388,−45108] |
96386901625/18468 |
288562500 |
[2] |
2880 |
0.62403
|
Γ0(N)-optimal |
2850.x2 |
2850ba2 |
[1,0,0,−2138,−54858] |
−69173457625/42633378 |
−666146531250 |
[2] |
5760 |
0.97060
|
|
sage:E.rank()
The elliptic curves in class 2850.x have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1−T |
5 | 1 |
19 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1+13T2 |
1.13.a
|
17 |
1−2T+17T2 |
1.17.ac
|
23 |
1−2T+23T2 |
1.23.ac
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 2850.x do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.