Show commands:
SageMath
E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 2850.x
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2850.x1 | 2850ba1 | \([1, 0, 0, -2388, -45108]\) | \(96386901625/18468\) | \(288562500\) | \([2]\) | \(2880\) | \(0.62403\) | \(\Gamma_0(N)\)-optimal |
2850.x2 | 2850ba2 | \([1, 0, 0, -2138, -54858]\) | \(-69173457625/42633378\) | \(-666146531250\) | \([2]\) | \(5760\) | \(0.97060\) |
Rank
sage: E.rank()
The elliptic curves in class 2850.x have rank \(0\).
Complex multiplication
The elliptic curves in class 2850.x do not have complex multiplication.Modular form 2850.2.a.x
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.