sage:E = EllipticCurve("lx1")
E.isogeny_class()
Elliptic curves in class 286650lx
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
286650.lx1 |
286650lx1 |
[1,−1,1,132070,203924697] |
304175/21632 |
−18118093061250000000 |
[] |
7257600 |
2.3748
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 286650lx1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1 |
5 | 1 |
7 | 1 |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+T+11T2 |
1.11.b
|
17 |
1−7T+17T2 |
1.17.ah
|
19 |
1−3T+19T2 |
1.19.ad
|
23 |
1+23T2 |
1.23.a
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 286650lx do not have complex multiplication.
sage:E.q_eigenform(10)