Properties

Label 286650lx
Number of curves $1$
Conductor $286650$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("lx1")
 
E.isogeny_class()
 

Elliptic curves in class 286650lx

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.lx1 286650lx1 \([1, -1, 1, 132070, 203924697]\) \(304175/21632\) \(-18118093061250000000\) \([]\) \(7257600\) \(2.3748\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 286650lx1 has rank \(0\).

Complex multiplication

The elliptic curves in class 286650lx do not have complex multiplication.

Modular form 286650.2.a.lx

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} - q^{11} - q^{13} + q^{16} + 7 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display