Properties

Label 286650lx
Number of curves 11
Conductor 286650286650
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("lx1") E.isogeny_class()
 

Elliptic curves in class 286650lx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.lx1 286650lx1 [1,1,1,132070,203924697][1, -1, 1, 132070, 203924697] 304175/21632304175/21632 18118093061250000000-18118093061250000000 [][] 72576007257600 2.37482.3748 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 286650lx1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
3311
5511
7711
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1717 17T+17T2 1 - 7 T + 17 T^{2} 1.17.ah
1919 13T+19T2 1 - 3 T + 19 T^{2} 1.19.ad
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650lx do not have complex multiplication.

Modular form 286650.2.a.lx

Copy content sage:E.q_eigenform(10)
 
q+q2+q4+q8q11q13+q16+7q17+3q19+O(q20)q + q^{2} + q^{4} + q^{8} - q^{11} - q^{13} + q^{16} + 7 q^{17} + 3 q^{19} + O(q^{20}) Copy content Toggle raw display