Show commands:
SageMath
E = EllipticCurve("lx1")
E.isogeny_class()
Elliptic curves in class 286650lx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
286650.lx1 | 286650lx1 | \([1, -1, 1, 132070, 203924697]\) | \(304175/21632\) | \(-18118093061250000000\) | \([]\) | \(7257600\) | \(2.3748\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 286650lx1 has rank \(0\).
Complex multiplication
The elliptic curves in class 286650lx do not have complex multiplication.Modular form 286650.2.a.lx
sage: E.q_eigenform(10)