E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 28749.b
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
28749.b1 |
28749f4 |
[1,0,0,−3575172,1185634485] |
1969718647361977/903077159859 |
2317048918414951016331 |
[2] |
1313280 |
2.7944
|
|
28749.b2 |
28749f2 |
[1,0,0,−1802317,−918744400] |
252352098250057/3961065969 |
10163011564454475321 |
[2,2] |
656640 |
2.4478
|
|
28749.b3 |
28749f1 |
[1,0,0,−1795472,−926160273] |
249487788397177/62937 |
161479123003233 |
[2] |
328320 |
2.1013
|
Γ0(N)-optimal |
28749.b4 |
28749f3 |
[1,0,0,−138982,−2548480033] |
−115714886617/1093466116323 |
−2805534891996587074107 |
[2] |
1313280 |
2.7944
|
|
The elliptic curves in class 28749.b have
rank 0.
The elliptic curves in class 28749.b do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.