Properties

Label 28749.b
Number of curves 44
Conductor 2874928749
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 28749.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28749.b1 28749f4 [1,0,0,3575172,1185634485][1, 0, 0, -3575172, 1185634485] 1969718647361977/9030771598591969718647361977/903077159859 23170489184149510163312317048918414951016331 [2][2] 13132801313280 2.79442.7944  
28749.b2 28749f2 [1,0,0,1802317,918744400][1, 0, 0, -1802317, -918744400] 252352098250057/3961065969252352098250057/3961065969 1016301156445447532110163011564454475321 [2,2][2, 2] 656640656640 2.44782.4478  
28749.b3 28749f1 [1,0,0,1795472,926160273][1, 0, 0, -1795472, -926160273] 249487788397177/62937249487788397177/62937 161479123003233161479123003233 [2][2] 328320328320 2.10132.1013 Γ0(N)\Gamma_0(N)-optimal
28749.b4 28749f3 [1,0,0,138982,2548480033][1, 0, 0, -138982, -2548480033] 115714886617/1093466116323-115714886617/1093466116323 2805534891996587074107-2805534891996587074107 [2][2] 13132801313280 2.79442.7944  

Rank

sage: E.rank()
 

The elliptic curves in class 28749.b have rank 00.

Complex multiplication

The elliptic curves in class 28749.b do not have complex multiplication.

Modular form 28749.2.a.b

sage: E.q_eigenform(10)
 
qq2+q3q4+2q5q6q7+3q8+q92q10q12+2q13+q14+2q15q162q17q18+4q19+O(q20)q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} - 2 q^{10} - q^{12} + 2 q^{13} + q^{14} + 2 q^{15} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.