Properties

Label 28749.b
Number of curves $4$
Conductor $28749$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 28749.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28749.b1 28749f4 \([1, 0, 0, -3575172, 1185634485]\) \(1969718647361977/903077159859\) \(2317048918414951016331\) \([2]\) \(1313280\) \(2.7944\)  
28749.b2 28749f2 \([1, 0, 0, -1802317, -918744400]\) \(252352098250057/3961065969\) \(10163011564454475321\) \([2, 2]\) \(656640\) \(2.4478\)  
28749.b3 28749f1 \([1, 0, 0, -1795472, -926160273]\) \(249487788397177/62937\) \(161479123003233\) \([2]\) \(328320\) \(2.1013\) \(\Gamma_0(N)\)-optimal
28749.b4 28749f3 \([1, 0, 0, -138982, -2548480033]\) \(-115714886617/1093466116323\) \(-2805534891996587074107\) \([2]\) \(1313280\) \(2.7944\)  

Rank

sage: E.rank()
 

The elliptic curves in class 28749.b have rank \(0\).

Complex multiplication

The elliptic curves in class 28749.b do not have complex multiplication.

Modular form 28749.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} - 2 q^{10} - q^{12} + 2 q^{13} + q^{14} + 2 q^{15} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.