E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 28749a
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
28749.a3 |
28749a1 |
[1,1,1,−22617,1297998] |
498677257/777 |
1993569419793 |
[4] |
65664 |
1.2588
|
Γ0(N)-optimal |
28749.a2 |
28749a2 |
[1,1,1,−29462,438266] |
1102302937/603729 |
1549003439179161 |
[2,2] |
131328 |
1.6054
|
|
28749.a4 |
28749a3 |
[1,1,1,114283,3600656] |
64336588343/39357381 |
−100980271820774829 |
[2] |
262656 |
1.9520
|
|
28749.a1 |
28749a4 |
[1,1,1,−282727,−57610072] |
974126411497/7195797 |
18462446396702973 |
[2] |
262656 |
1.9520
|
|
The elliptic curves in class 28749a have
rank 1.
The elliptic curves in class 28749a do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.