Properties

Label 28749a
Number of curves $4$
Conductor $28749$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 28749a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28749.a3 28749a1 \([1, 1, 1, -22617, 1297998]\) \(498677257/777\) \(1993569419793\) \([4]\) \(65664\) \(1.2588\) \(\Gamma_0(N)\)-optimal
28749.a2 28749a2 \([1, 1, 1, -29462, 438266]\) \(1102302937/603729\) \(1549003439179161\) \([2, 2]\) \(131328\) \(1.6054\)  
28749.a4 28749a3 \([1, 1, 1, 114283, 3600656]\) \(64336588343/39357381\) \(-100980271820774829\) \([2]\) \(262656\) \(1.9520\)  
28749.a1 28749a4 \([1, 1, 1, -282727, -57610072]\) \(974126411497/7195797\) \(18462446396702973\) \([2]\) \(262656\) \(1.9520\)  

Rank

sage: E.rank()
 

The elliptic curves in class 28749a have rank \(1\).

Complex multiplication

The elliptic curves in class 28749a do not have complex multiplication.

Modular form 28749.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} + 2 q^{5} + q^{6} - q^{7} + 3 q^{8} + q^{9} - 2 q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{14} - 2 q^{15} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.