Properties

Label 28749a
Number of curves 44
Conductor 2874928749
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 28749a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28749.a3 28749a1 [1,1,1,22617,1297998][1, 1, 1, -22617, 1297998] 498677257/777498677257/777 19935694197931993569419793 [4][4] 6566465664 1.25881.2588 Γ0(N)\Gamma_0(N)-optimal
28749.a2 28749a2 [1,1,1,29462,438266][1, 1, 1, -29462, 438266] 1102302937/6037291102302937/603729 15490034391791611549003439179161 [2,2][2, 2] 131328131328 1.60541.6054  
28749.a4 28749a3 [1,1,1,114283,3600656][1, 1, 1, 114283, 3600656] 64336588343/3935738164336588343/39357381 100980271820774829-100980271820774829 [2][2] 262656262656 1.95201.9520  
28749.a1 28749a4 [1,1,1,282727,57610072][1, 1, 1, -282727, -57610072] 974126411497/7195797974126411497/7195797 1846244639670297318462446396702973 [2][2] 262656262656 1.95201.9520  

Rank

sage: E.rank()
 

The elliptic curves in class 28749a have rank 11.

Complex multiplication

The elliptic curves in class 28749a do not have complex multiplication.

Modular form 28749.2.a.a

sage: E.q_eigenform(10)
 
qq2q3q4+2q5+q6q7+3q8+q92q10+4q11+q122q13+q142q15q162q17q184q19+O(q20)q - q^{2} - q^{3} - q^{4} + 2 q^{5} + q^{6} - q^{7} + 3 q^{8} + q^{9} - 2 q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{14} - 2 q^{15} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.