Properties

Label 28749a3
Conductor 2874928749
Discriminant 1.010×1017-1.010\times 10^{17}
j-invariant 6433658834339357381 \frac{64336588343}{39357381}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x2+114283x+3600656y^2+xy+y=x^3+x^2+114283x+3600656 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z+114283xz2+3600656z3y^2z+xyz+yz^2=x^3+x^2z+114283xz^2+3600656z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+148110741x+165770553510y^2=x^3+148110741x+165770553510 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, 114283, 3600656])
 
gp: E = ellinit([1, 1, 1, 114283, 3600656])
 
magma: E := EllipticCurve([1, 1, 1, 114283, 3600656]);
 
oscar: E = elliptic_curve([1, 1, 1, 114283, 3600656])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1088,37103)(1088, 37103)3.54048172583621953499414532803.5404817258362195349941453280\infty
(125/4,121/8)(-125/4, 121/8)0022

Integral points

(1088,37103) \left(1088, 37103\right) , (1088,38192) \left(1088, -38192\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  28749 28749  = 373723 \cdot 7 \cdot 37^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  100980271820774829-100980271820774829 = 1373710-1 \cdot 3 \cdot 7 \cdot 37^{10}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  6433658834339357381 \frac{64336588343}{39357381}  = 3171374400733^{-1} \cdot 7^{-1} \cdot 37^{-4} \cdot 4007^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.95199063977869135241800331081.9519906397786913524180033108
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.146531683456579130233955475280.14653168345657913023395547528
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93571537511645710.9357153751164571
Szpiro ratio: σm\sigma_{m} ≈ 4.5345097662816634.534509766281663

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.54048172583621953499414532803.5404817258362195349941453280
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.207133869261135784591393935800.20713386926113578459139393580
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 1122 1\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.93341471568319954369780752192.9334147156831995436978075219
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  44 = 222^2    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.933414716L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor240.2071343.5404824222.933414716\displaystyle 2.933414716 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.207134 \cdot 3.540482 \cdot 4}{2^2} \approx 2.933414716

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   28749.2.a.a

qq2q3q4+2q5+q6q7+3q8+q92q10+4q11+q122q13+q142q15q162q17q184q19+O(q20) q - q^{2} - q^{3} - q^{4} + 2 q^{5} + q^{6} - q^{7} + 3 q^{8} + q^{9} - 2 q^{10} + 4 q^{11} + q^{12} - 2 q^{13} + q^{14} - 2 q^{15} - q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 262656
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1
3737 44 I4I_{4}^{*} additive 1 2 10 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.12.0.6

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 8, 1], [6209, 8, 6208, 9], [1, 8, 0, 1], [1, 4, 4, 17], [4148, 1, 2095, 6], [3888, 785, 3913, 3960], [7, 6, 6210, 6211], [5443, 5442, 3898, 787], [5332, 1, 2687, 6], [4031, 6208, 3692, 6183]]
 
GL(2,Integers(6216)).subgroup(gens)
 
Gens := [[1, 0, 8, 1], [6209, 8, 6208, 9], [1, 8, 0, 1], [1, 4, 4, 17], [4148, 1, 2095, 6], [3888, 785, 3913, 3960], [7, 6, 6210, 6211], [5443, 5442, 3898, 787], [5332, 1, 2687, 6], [4031, 6208, 3692, 6183]];
 
sub<GL(2,Integers(6216))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6216=233737 6216 = 2^{3} \cdot 3 \cdot 7 \cdot 37 , index 4848, genus 00, and generators

(1081),(6209862089),(1801),(14417),(4148120956),(388878539133960),(7662106211),(544354423898787),(5332126876),(4031620836926183)\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 6209 & 8 \\ 6208 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 4148 & 1 \\ 2095 & 6 \end{array}\right),\left(\begin{array}{rr} 3888 & 785 \\ 3913 & 3960 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 6210 & 6211 \end{array}\right),\left(\begin{array}{rr} 5443 & 5442 \\ 3898 & 787 \end{array}\right),\left(\begin{array}{rr} 5332 & 1 \\ 2687 & 6 \end{array}\right),\left(\begin{array}{rr} 4031 & 6208 \\ 3692 & 6183 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6216])K:=\Q(E[6216]) is a degree-56425064693765642506469376 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6216Z)\GL_2(\Z/6216\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 nonsplit multiplicative 44 9583=7372 9583 = 7 \cdot 37^{2}
77 nonsplit multiplicative 88 4107=3372 4107 = 3 \cdot 37^{2}
3737 additive 722722 21=37 21 = 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 28749a consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 777a4, its twist by 3737.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(21)\Q(\sqrt{-21}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(37)\Q(\sqrt{37}) Z/4Z\Z/4\Z not in database
22 Q(777)\Q(\sqrt{-777}) Z/4Z\Z/4\Z not in database
44 Q(21,37)\Q(\sqrt{-21}, \sqrt{37}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.2.459984.1 Z/8Z\Z/8\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 8.0.1492945737486336.7 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord nonsplit ord nonsplit ord ord ord ord ss ord ss add ord ord ss
λ\lambda-invariant(s) 1 1 1 1 1 1 1 1 1,1 1 1,1 - 1 1 1,1
μ\mu-invariant(s) 2 0 0 0 0 0 0 0 0,0 0 0,0 - 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.