Properties

Label 28749d3
Conductor 2874928749
Discriminant 2.726×10182.726\times 10^{18}
j-invariant 28109817408971062649287 \frac{2810981740897}{1062649287}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2402514x+57712777y^2+xy=x^3+x^2-402514x+57712777 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z402514xz2+57712777z3y^2z+xyz=x^3+x^2z-402514xz^2+57712777z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3521658819x+2700472202622y^2=x^3-521658819x+2700472202622 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -402514, 57712777])
 
gp: E = ellinit([1, 1, 0, -402514, 57712777])
 
magma: E := EllipticCurve([1, 1, 0, -402514, 57712777]);
 
oscar: E = elliptic_curve([1, 1, 0, -402514, 57712777])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2789/4,2789/8)(-2789/4, 2789/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  28749 28749  = 373723 \cdot 7 \cdot 37^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  27264673391609203832726467339160920383 = 34737103^{4} \cdot 7 \cdot 37^{10}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  28109817408971062649287 \frac{2810981740897}{1062649287}  = 3471113374128333^{-4} \cdot 7^{-1} \cdot 11^{3} \cdot 37^{-4} \cdot 1283^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.23697110071555947880722164702.2369711007155594788072216470
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.431512144393447256623173811480.43151214439344725662317381148
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93351187655238520.9335118765523852
Szpiro ratio: σm\sigma_{m} ≈ 4.902426069567334.90242606956733

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.233119377700232773388013442120.23311937770023277338801344212
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2122 2\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.86495502160186218710410753701.8649550216018621871041075370
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  44 = 222^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.864955022L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor240.2331191.0000008221.864955022\displaystyle 1.864955022 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.233119 \cdot 1.000000 \cdot 8}{2^2} \approx 1.864955022

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   28749.2.a.g

q+q2q3q4+2q5q6+q73q8+q9+2q10+q122q13+q142q15q16+6q17+q184q19+O(q20) q + q^{2} - q^{3} - q^{4} + 2 q^{5} - q^{6} + q^{7} - 3 q^{8} + q^{9} + 2 q^{10} + q^{12} - 2 q^{13} + q^{14} - 2 q^{15} - q^{16} + 6 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 437760
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I4I_{4} nonsplit multiplicative 1 1 4 4
77 11 I1I_{1} split multiplicative -1 1 1 1
3737 44 I4I_{4}^{*} additive 1 2 10 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 8, 1], [6209, 8, 6208, 9], [1, 8, 0, 1], [1, 4, 4, 17], [4145, 8, 4148, 33], [7, 6, 6210, 6211], [5443, 5442, 3898, 787], [5332, 1, 2687, 6], [5440, 2339, 5443, 5472], [4031, 6208, 3692, 6183]]
 
GL(2,Integers(6216)).subgroup(gens)
 
Gens := [[1, 0, 8, 1], [6209, 8, 6208, 9], [1, 8, 0, 1], [1, 4, 4, 17], [4145, 8, 4148, 33], [7, 6, 6210, 6211], [5443, 5442, 3898, 787], [5332, 1, 2687, 6], [5440, 2339, 5443, 5472], [4031, 6208, 3692, 6183]];
 
sub<GL(2,Integers(6216))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6216=233737 6216 = 2^{3} \cdot 3 \cdot 7 \cdot 37 , index 4848, genus 00, and generators

(1081),(6209862089),(1801),(14417),(41458414833),(7662106211),(544354423898787),(5332126876),(5440233954435472),(4031620836926183)\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 6209 & 8 \\ 6208 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 4145 & 8 \\ 4148 & 33 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 6210 & 6211 \end{array}\right),\left(\begin{array}{rr} 5443 & 5442 \\ 3898 & 787 \end{array}\right),\left(\begin{array}{rr} 5332 & 1 \\ 2687 & 6 \end{array}\right),\left(\begin{array}{rr} 5440 & 2339 \\ 5443 & 5472 \end{array}\right),\left(\begin{array}{rr} 4031 & 6208 \\ 3692 & 6183 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6216])K:=\Q(E[6216]) is a degree-56425064693765642506469376 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6216Z)\GL_2(\Z/6216\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 9583=7372 9583 = 7 \cdot 37^{2}
33 nonsplit multiplicative 44 9583=7372 9583 = 7 \cdot 37^{2}
77 split multiplicative 88 4107=3372 4107 = 3 \cdot 37^{2}
3737 additive 722722 21=37 21 = 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 28749d consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 777d3, its twist by 3737.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{7}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(37)\Q(\sqrt{-37}) Z/4Z\Z/4\Z not in database
22 Q(259)\Q(\sqrt{-259}) Z/4Z\Z/4\Z not in database
44 Q(7,37)\Q(\sqrt{7}, \sqrt{-37}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.14450240224559104.8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.487492485709824.17 Z/8Z\Z/8\Z not in database
88 8.0.285759145065744.6 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 7 37
Reduction type ord nonsplit split add
λ\lambda-invariant(s) 3 0 1 -
μ\mu-invariant(s) 1 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.