Properties

Label 28749f1
Conductor 2874928749
Discriminant 1.615×10141.615\times 10^{14}
j-invariant 24948778839717762937 \frac{249487788397177}{62937}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x31795472x926160273y^2+xy=x^3-1795472x-926160273 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x31795472xz2926160273z3y^2z+xyz=x^3-1795472xz^2-926160273z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32326931739x43203952901898y^2=x^3-2326931739x-43203952901898 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -1795472, -926160273])
 
gp: E = ellinit([1, 0, 0, -1795472, -926160273])
 
magma: E := EllipticCurve([1, 0, 0, -1795472, -926160273]);
 
oscar: E = elliptic_curve([1, 0, 0, -1795472, -926160273])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(774,387)(-774, 387)0022

Integral points

(774,387) \left(-774, 387\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  28749 28749  = 373723 \cdot 7 \cdot 37^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  161479123003233161479123003233 = 3573773^{5} \cdot 7 \cdot 37^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  24948778839717762937 \frac{249487788397177}{62937}  = 35711133715939733^{-5} \cdot 7^{-1} \cdot 11^{3} \cdot 37^{-1} \cdot 59^{3} \cdot 97^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.10125527896350635446234107892.1012552789635063544623410789
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.295796322641394132278293243380.29579632264139413227829324338
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94786074649286640.9478607464928664
Szpiro ratio: σm\sigma_{m} ≈ 5.3393751861340415.339375186134041

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.130423214761976463010489232420.13042321476197646301048923242
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 20 20  = 5122 5\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.60846429523952926020978464842.6084642952395292602097846484
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  44 = 222^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.608464295L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor240.1304231.00000020222.608464295\displaystyle 2.608464295 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.130423 \cdot 1.000000 \cdot 20}{2^2} \approx 2.608464295

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   28749.2.a.b

qq2+q3q4+2q5q6q7+3q8+q92q10q12+2q13+q14+2q15q162q17q18+4q19+O(q20) q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} - 2 q^{10} - q^{12} + 2 q^{13} + q^{14} + 2 q^{15} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 328320
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 55 I5I_{5} split multiplicative -1 1 5 5
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1
3737 44 I1I_{1}^{*} additive 1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 8, 1], [6209, 8, 6208, 9], [1, 8, 0, 1], [1, 4, 4, 17], [2080, 3, 2077, 2], [3692, 6215, 5689, 6210], [7, 6, 6210, 6211], [785, 780, 782, 3887], [5443, 5442, 3898, 787], [5332, 1, 2687, 6]]
 
GL(2,Integers(6216)).subgroup(gens)
 
Gens := [[1, 0, 8, 1], [6209, 8, 6208, 9], [1, 8, 0, 1], [1, 4, 4, 17], [2080, 3, 2077, 2], [3692, 6215, 5689, 6210], [7, 6, 6210, 6211], [785, 780, 782, 3887], [5443, 5442, 3898, 787], [5332, 1, 2687, 6]];
 
sub<GL(2,Integers(6216))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6216=233737 6216 = 2^{3} \cdot 3 \cdot 7 \cdot 37 , index 4848, genus 00, and generators

(1081),(6209862089),(1801),(14417),(2080320772),(3692621556896210),(7662106211),(7857807823887),(544354423898787),(5332126876)\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 6209 & 8 \\ 6208 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2080 & 3 \\ 2077 & 2 \end{array}\right),\left(\begin{array}{rr} 3692 & 6215 \\ 5689 & 6210 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 6210 & 6211 \end{array}\right),\left(\begin{array}{rr} 785 & 780 \\ 782 & 3887 \end{array}\right),\left(\begin{array}{rr} 5443 & 5442 \\ 3898 & 787 \end{array}\right),\left(\begin{array}{rr} 5332 & 1 \\ 2687 & 6 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6216])K:=\Q(E[6216]) is a degree-56425064693765642506469376 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6216Z)\GL_2(\Z/6216\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 split multiplicative 44 9583=7372 9583 = 7 \cdot 37^{2}
55 good 22 9583=7372 9583 = 7 \cdot 37^{2}
77 nonsplit multiplicative 88 4107=3372 4107 = 3 \cdot 37^{2}
3737 additive 722722 21=37 21 = 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 28749f consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 777e1, its twist by 3737.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(777)\Q(\sqrt{777}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(111)\Q(\sqrt{-111}) Z/4Z\Z/4\Z not in database
22 Q(7)\Q(\sqrt{-7}) Z/4Z\Z/4\Z not in database
44 Q(7,111)\Q(\sqrt{-7}, \sqrt{-111}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.66946905081.2 Z/8Z\Z/8\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 37
Reduction type ord split ord nonsplit add
λ\lambda-invariant(s) 3 1 2 0 -
μ\mu-invariant(s) 0 0 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p7p\ge 7 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.