Properties

Label 2880bb
Number of curves 88
Conductor 28802880
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bb1")
 
E.isogeny_class()
 

Elliptic curves in class 2880bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2880.q8 2880bb1 [0,0,0,852,29392][0, 0, 0, 852, 29392] 357911/2160357911/2160 412782428160-412782428160 [2][2] 30723072 0.910740.91074 Γ0(N)\Gamma_0(N)-optimal
2880.q6 2880bb2 [0,0,0,10668,384208][0, 0, 0, -10668, 384208] 702595369/72900702595369/72900 1393140695040013931406950400 [2,2][2, 2] 61446144 1.25731.2573  
2880.q7 2880bb3 [0,0,0,7788,865712][0, 0, 0, -7788, -865712] 273359449/1536000-273359449/1536000 293534171136000-293534171136000 [2][2] 92169216 1.46001.4600  
2880.q5 2880bb4 [0,0,0,39468,2599472][0, 0, 0, -39468, -2599472] 35578826569/531441035578826569/5314410 10155995666841601015599566684160 [2][2] 1228812288 1.60391.6039  
2880.q4 2880bb5 [0,0,0,166188,26076112][0, 0, 0, -166188, 26076112] 2656166199049/337502656166199049/33750 64497254400006449725440000 [2][2] 1228812288 1.60391.6039  
2880.q3 2880bb6 [0,0,0,192108,32347568][0, 0, 0, -192108, -32347568] 4102915888729/90000004102915888729/9000000 17199267840000001719926784000000 [2,2][2, 2] 1843218432 1.80661.8066  
2880.q1 2880bb7 [0,0,0,3072108,2072539568][0, 0, 0, -3072108, -2072539568] 16778985534208729/8100016778985534208729/81000 1547934105600015479341056000 [2][2] 3686436864 2.15322.1532  
2880.q2 2880bb8 [0,0,0,261228,6994352][0, 0, 0, -261228, -6994352] 10316097499609/585937500010316097499609/5859375000 11197440000000000001119744000000000000 [2][2] 3686436864 2.15322.1532  

Rank

sage: E.rank()
 

The elliptic curves in class 2880bb have rank 11.

Complex multiplication

The elliptic curves in class 2880bb do not have complex multiplication.

Modular form 2880.2.a.bb

sage: E.q_eigenform(10)
 
qq5+4q72q136q174q19+O(q20)q - q^{5} + 4 q^{7} - 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.