Properties

Label 2880bb2
Conductor 28802880
Discriminant 1.393×10131.393\times 10^{13}
j-invariant 70259536972900 \frac{702595369}{72900}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x310668x+384208y^2=x^3-10668x+384208 Copy content Toggle raw display (homogenize, simplify)
y2z=x310668xz2+384208z3y^2z=x^3-10668xz^2+384208z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x310668x+384208y^2=x^3-10668x+384208 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -10668, 384208])
 
gp: E = ellinit([0, 0, 0, -10668, 384208])
 
magma: E := EllipticCurve([0, 0, 0, -10668, 384208]);
 
oscar: E = elliptic_curve([0, 0, 0, -10668, 384208])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(29,315)(29, 315)2.50837284860216020160225859902.5083728486021602016022585990\infty
(44,0)(44, 0)0022
(74,0)(74, 0)0022

Integral points

(118,0) \left(-118, 0\right) , (54,±896)(-54,\pm 896), (29,±315)(29,\pm 315), (44,0) \left(44, 0\right) , (74,0) \left(74, 0\right) , (368,±6804)(368,\pm 6804) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  2880 2880  = 263252^{6} \cdot 3^{2} \cdot 5
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1393140695040013931406950400 = 220312522^{20} \cdot 3^{12} \cdot 5^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  70259536972900 \frac{702595369}{72900}  = 2236527312732^{-2} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{3} \cdot 127^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.25731316577629698970647444301.2573131657762969897064744430
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.33171374939767582011699635765-0.33171374939767582011699635765
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00456889638274041.0045688963827404
Szpiro ratio: σm\sigma_{m} ≈ 4.9511504675419654.951150467541965

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.50837284860216020160225859902.5083728486021602016022585990
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.684213573279331226381775708080.68421357327933122638177570808
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2^{2}\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.43252549971787790215894259333.4325254997178779021589425933
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.432525500L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6842142.50837332423.432525500\displaystyle 3.432525500 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.684214 \cdot 2.508373 \cdot 32}{4^2} \approx 3.432525500

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2880.2.a.q

qq5+4q72q136q174q19+O(q20) q - q^{5} + 4 q^{7} - 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6144
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I10I_{10}^{*} additive -1 6 20 2
33 44 I6I_{6}^{*} additive -1 2 12 6
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.12.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[89, 108, 54, 47], [39, 116, 98, 111], [109, 12, 108, 13], [97, 6, 0, 1], [9, 4, 104, 113], [1, 0, 12, 1], [1, 12, 0, 1], [53, 114, 6, 5]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[89, 108, 54, 47], [39, 116, 98, 111], [109, 12, 108, 13], [97, 6, 0, 1], [9, 4, 104, 113], [1, 0, 12, 1], [1, 12, 0, 1], [53, 114, 6, 5]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 384384, genus 55, and generators

(891085447),(3911698111),(1091210813),(97601),(94104113),(10121),(11201),(5311465)\left(\begin{array}{rr} 89 & 108 \\ 54 & 47 \end{array}\right),\left(\begin{array}{rr} 39 & 116 \\ 98 & 111 \end{array}\right),\left(\begin{array}{rr} 109 & 12 \\ 108 & 13 \end{array}\right),\left(\begin{array}{rr} 97 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 104 & 113 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 53 & 114 \\ 6 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-9216092160 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 9=32 9 = 3^{2}
33 additive 22 320=265 320 = 2^{6} \cdot 5
55 nonsplit multiplicative 66 576=2632 576 = 2^{6} \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 2880bb consists of 8 curves linked by isogenies of degrees dividing 12.

Twists

The minimal quadratic twist of this elliptic curve is 30a2, its twist by 2424.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(6)\Q(\sqrt{6}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z 2.2.24.1-150.1-e7
44 Q(3,10)\Q(\sqrt{3}, \sqrt{10}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,15)\Q(\sqrt{2}, \sqrt{-15}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
66 6.0.11520000.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
88 8.8.3317760000.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
88 8.0.3317760000.6 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1212 12.0.1194393600000000.1 Z/6ZZ/12Z\Z/6\Z \oplus \Z/12\Z not in database
1616 16.0.11007531417600000000.1 Z/4ZZ/12Z\Z/4\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1818 18.6.4663277994109219268198400000000.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add nonsplit ord ss ord ord ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) - - 1 1 1,1 1 1 1 1,1 1 1 1 1 1 1,1
μ\mu-invariant(s) - - 0 0 0,0 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.