Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 2900.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2900.e1 | 2900d1 | \([0, 0, 0, -120775, -16155250]\) | \(-48707390098512/29\) | \(-116000000\) | \([]\) | \(12960\) | \(1.3055\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 2900.e1 has rank \(0\).
Complex multiplication
The elliptic curves in class 2900.e do not have complex multiplication.Modular form 2900.2.a.e
sage: E.q_eigenform(10)