Properties

Label 2900.e
Number of curves $1$
Conductor $2900$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 2900.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2900.e1 2900d1 \([0, 0, 0, -120775, -16155250]\) \(-48707390098512/29\) \(-116000000\) \([]\) \(12960\) \(1.3055\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2900.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2900.e do not have complex multiplication.

Modular form 2900.2.a.e

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} - 4 q^{7} + 6 q^{9} - q^{11} + 3 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display