sage:E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 2900.e
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2900.e1 |
2900d1 |
[0,0,0,−120775,−16155250] |
−48707390098512/29 |
−116000000 |
[] |
12960 |
1.3055
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 2900.e1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
29 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−3T+3T2 |
1.3.ad
|
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+T+11T2 |
1.11.b
|
13 |
1−3T+13T2 |
1.13.ad
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1−6T+23T2 |
1.23.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 2900.e do not have complex multiplication.
sage:E.q_eigenform(10)