Properties

Label 2900.e
Number of curves 11
Conductor 29002900
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Elliptic curves in class 2900.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2900.e1 2900d1 [0,0,0,120775,16155250][0, 0, 0, -120775, -16155250] 48707390098512/29-48707390098512/29 116000000-116000000 [][] 1296012960 1.30551.3055 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 2900.e1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
29291+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 13T+3T2 1 - 3 T + 3 T^{2} 1.3.ad
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1313 13T+13T2 1 - 3 T + 13 T^{2} 1.13.ad
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2900.e do not have complex multiplication.

Modular form 2900.2.a.e

Copy content sage:E.q_eigenform(10)
 
q+3q34q7+6q9q11+3q132q17+4q19+O(q20)q + 3 q^{3} - 4 q^{7} + 6 q^{9} - q^{11} + 3 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display