Properties

Label 292032bi1
Conductor 292032292032
Discriminant 6.080×1012-6.080\times 10^{12}
j-invariant 13824 -13824
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x39126x+355914y^2=x^3-9126x+355914 Copy content Toggle raw display (homogenize, simplify)
y2z=x39126xz2+355914z3y^2z=x^3-9126xz^2+355914z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x39126x+355914y^2=x^3-9126x+355914 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -9126, 355914])
 
gp: E = ellinit([0, 0, 0, -9126, 355914])
 
magma: E := EllipticCurve([0, 0, 0, -9126, 355914]);
 
oscar: E = elliptic_curve([0, 0, 0, -9126, 355914])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  292032 292032  = 26331322^{6} \cdot 3^{3} \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  6080389219008-6080389219008 = 12639136-1 \cdot 2^{6} \cdot 3^{9} \cdot 13^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13824 -13824  = 12933-1 \cdot 2^{9} \cdot 3^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.20260245483970368035955815171.2026024548397036803595581517
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.2504050306721196109222355575-1.2504050306721196109222355575
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.22629438553091671.2262943855309167
Szpiro ratio: σm\sigma_{m} ≈ 3.1060165902179493.106016590217949

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.742108617782859125086152920500.74210861778285912508615292050
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.742108617782859125086152920500.74210861778285912508615292050
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.742108618L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7421091.0000001120.742108618\displaystyle 0.742108618 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.742109 \cdot 1.000000 \cdot 1}{1^2} \approx 0.742108618

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 292032.2.a.bi

q2q53q76q11+2q173q19+O(q20) q - 2 q^{5} - 3 q^{7} - 6 q^{11} + 2 q^{17} - 3 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 646272
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive -1 6 6 0
33 11 IVIV^{*} additive 1 3 9 0
1313 11 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Nn 3.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[196, 273, 195, 79], [157, 156, 156, 157], [38, 91, 65, 38], [1, 0, 144, 1], [53, 0, 0, 53], [155, 0, 0, 311], [167, 0, 0, 311], [1, 0, 156, 1], [169, 144, 168, 169], [311, 234, 234, 311], [79, 0, 78, 79], [27, 52, 104, 27], [1, 156, 0, 1], [259, 91, 13, 38]]
 
GL(2,Integers(312)).subgroup(gens)
 
Gens := [[196, 273, 195, 79], [157, 156, 156, 157], [38, 91, 65, 38], [1, 0, 144, 1], [53, 0, 0, 53], [155, 0, 0, 311], [167, 0, 0, 311], [1, 0, 156, 1], [169, 144, 168, 169], [311, 234, 234, 311], [79, 0, 78, 79], [27, 52, 104, 27], [1, 156, 0, 1], [259, 91, 13, 38]];
 
sub<GL(2,Integers(312))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 312=23313 312 = 2^{3} \cdot 3 \cdot 13 , index 2424, genus 11, and generators

(19627319579),(157156156157),(38916538),(101441),(530053),(15500311),(16700311),(101561),(169144168169),(311234234311),(7907879),(275210427),(115601),(259911338)\left(\begin{array}{rr} 196 & 273 \\ 195 & 79 \end{array}\right),\left(\begin{array}{rr} 157 & 156 \\ 156 & 157 \end{array}\right),\left(\begin{array}{rr} 38 & 91 \\ 65 & 38 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 144 & 1 \end{array}\right),\left(\begin{array}{rr} 53 & 0 \\ 0 & 53 \end{array}\right),\left(\begin{array}{rr} 155 & 0 \\ 0 & 311 \end{array}\right),\left(\begin{array}{rr} 167 & 0 \\ 0 & 311 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 156 & 1 \end{array}\right),\left(\begin{array}{rr} 169 & 144 \\ 168 & 169 \end{array}\right),\left(\begin{array}{rr} 311 & 234 \\ 234 & 311 \end{array}\right),\left(\begin{array}{rr} 79 & 0 \\ 78 & 79 \end{array}\right),\left(\begin{array}{rr} 27 & 52 \\ 104 & 27 \end{array}\right),\left(\begin{array}{rr} 1 & 156 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 259 & 91 \\ 13 & 38 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[312])K:=\Q(E[312]) is a degree-8051097680510976 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/312Z)\GL_2(\Z/312\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 4563=33132 4563 = 3^{3} \cdot 13^{2}
33 additive 22 416=2513 416 = 2^{5} \cdot 13
1313 additive 8686 1728=2633 1728 = 2^{6} \cdot 3^{3}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 292032bi consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 864i1, its twist by 104-104.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.108.1 Z/2Z\Z/2\Z not in database
66 6.0.34992.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.16374276292608.11 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1616 deg 16 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.