Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 2928.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2928.j1 | 2928o4 | \([0, 1, 0, -20824, 1149716]\) | \(243824355417817/19764\) | \(80953344\) | \([4]\) | \(4992\) | \(0.96198\) | |
2928.j2 | 2928o3 | \([0, 1, 0, -2264, -12780]\) | \(313461959257/166150092\) | \(680550776832\) | \([2]\) | \(4992\) | \(0.96198\) | |
2928.j3 | 2928o2 | \([0, 1, 0, -1304, 17556]\) | \(59914169497/535824\) | \(2194735104\) | \([2, 2]\) | \(2496\) | \(0.61541\) | |
2928.j4 | 2928o1 | \([0, 1, 0, -24, 660]\) | \(-389017/46848\) | \(-191889408\) | \([2]\) | \(1248\) | \(0.26884\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2928.j have rank \(0\).
Complex multiplication
The elliptic curves in class 2928.j do not have complex multiplication.Modular form 2928.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.