Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 294.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
294.c1 | 294g2 | \([1, 0, 1, -138, 592]\) | \(838561807/26244\) | \(9001692\) | \([2]\) | \(128\) | \(0.10948\) | |
294.c2 | 294g1 | \([1, 0, 1, 2, 32]\) | \(4913/1296\) | \(-444528\) | \([2]\) | \(64\) | \(-0.23709\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 294.c have rank \(1\).
Complex multiplication
The elliptic curves in class 294.c do not have complex multiplication.Modular form 294.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.