Properties

Label 294.c
Number of curves 22
Conductor 294294
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 294.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
294.c1 294g2 [1,0,1,138,592][1, 0, 1, -138, 592] 838561807/26244838561807/26244 90016929001692 [2][2] 128128 0.109480.10948  
294.c2 294g1 [1,0,1,2,32][1, 0, 1, 2, 32] 4913/12964913/1296 444528-444528 [2][2] 6464 0.23709-0.23709 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 294.c have rank 11.

Complex multiplication

The elliptic curves in class 294.c do not have complex multiplication.

Modular form 294.2.a.c

sage: E.q_eigenform(10)
 
qq2+q3+q44q5q6q8+q9+4q104q11+q124q134q15+q16q184q19+O(q20)q - q^{2} + q^{3} + q^{4} - 4 q^{5} - q^{6} - q^{8} + q^{9} + 4 q^{10} - 4 q^{11} + q^{12} - 4 q^{13} - 4 q^{15} + q^{16} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.