Properties

Label 29400.cs
Number of curves $4$
Conductor $29400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cs1")
 
E.isogeny_class()
 

Elliptic curves in class 29400.cs

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29400.cs1 29400bu4 \([0, 1, 0, -3548008, -2573228512]\) \(2624033547076/324135\) \(610146537840000000\) \([2]\) \(884736\) \(2.4360\)  
29400.cs2 29400bu2 \([0, 1, 0, -240508, -33068512]\) \(3269383504/893025\) \(420253992900000000\) \([2, 2]\) \(442368\) \(2.0894\)  
29400.cs3 29400bu1 \([0, 1, 0, -87383, 9500238]\) \(2508888064/118125\) \(3474322031250000\) \([2]\) \(221184\) \(1.7428\) \(\Gamma_0(N)\)-optimal
29400.cs4 29400bu3 \([0, 1, 0, 616992, -214858512]\) \(13799183324/18600435\) \(-35013161237040000000\) \([2]\) \(884736\) \(2.4360\)  

Rank

sage: E.rank()
 

The elliptic curves in class 29400.cs have rank \(1\).

Complex multiplication

The elliptic curves in class 29400.cs do not have complex multiplication.

Modular form 29400.2.a.cs

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{11} - 6 q^{13} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.