Properties

Label 2940l
Number of curves $2$
Conductor $2940$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 2940l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2940.j2 2940l1 \([0, 1, 0, -625, 5648]\) \(4927700992/151875\) \(833490000\) \([2]\) \(1920\) \(0.48738\) \(\Gamma_0(N)\)-optimal
2940.j1 2940l2 \([0, 1, 0, -1500, -14652]\) \(4253563312/1476225\) \(129624364800\) \([2]\) \(3840\) \(0.83395\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2940l have rank \(1\).

Complex multiplication

The elliptic curves in class 2940l do not have complex multiplication.

Modular form 2940.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - 6 q^{11} + q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.