Properties

Label 29575.f
Number of curves 22
Conductor 2957529575
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 29575.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29575.f1 29575w2 [0,1,1,626708,191710744][0, 1, 1, -626708, 191710744] 2887553024/16807-2887553024/16807 158445661841796875-158445661841796875 [][] 468000468000 2.14142.1414  
29575.f2 29575w1 [0,1,1,7042,315506][0, 1, 1, 7042, -315506] 4096/74096/7 65991529296875-65991529296875 [][] 9360093600 1.33671.3367 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 29575.f have rank 11.

Complex multiplication

The elliptic curves in class 29575.f do not have complex multiplication.

Modular form 29575.2.a.f

sage: E.q_eigenform(10)
 
q2q2+q3+2q42q6+q72q9+3q11+2q122q144q16+7q17+4q18+O(q20)q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} + q^{7} - 2 q^{9} + 3 q^{11} + 2 q^{12} - 2 q^{14} - 4 q^{16} + 7 q^{17} + 4 q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.