sage:E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 29575.f
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
29575.f1 |
29575w2 |
[0,1,1,−626708,191710744] |
−2887553024/16807 |
−158445661841796875 |
[] |
468000 |
2.1414
|
|
29575.f2 |
29575w1 |
[0,1,1,7042,−315506] |
4096/7 |
−65991529296875 |
[] |
93600 |
1.3367
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 29575.f have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
5 | 1 |
7 | 1−T |
13 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1+2T+2T2 |
1.2.c
|
3 |
1−T+3T2 |
1.3.ab
|
11 |
1−3T+11T2 |
1.11.ad
|
17 |
1−7T+17T2 |
1.17.ah
|
19 |
1+19T2 |
1.19.a
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1+5T+29T2 |
1.29.f
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 29575.f do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1551)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.