Properties

Label 29575w2
Conductor 2957529575
Discriminant 1.584×1017-1.584\times 10^{17}
j-invariant 288755302416807 -\frac{2887553024}{16807}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2626708x+191710744y^2+y=x^3+x^2-626708x+191710744 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z626708xz2+191710744z3y^2z+yz^2=x^3+x^2z-626708xz^2+191710744z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3812214000x+8954203050000y^2=x^3-812214000x+8954203050000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -626708, 191710744])
 
gp: E = ellinit([0, 1, 1, -626708, 191710744])
 
magma: E := EllipticCurve([0, 1, 1, -626708, 191710744]);
 
oscar: E = elliptic_curve([0, 1, 1, -626708, 191710744])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(533,3062)(533, 3062)1.12761790290469333888150860211.1276179029046933388815086021\infty

Integral points

(302,5484) \left(302, 5484\right) , (302,5485) \left(302, -5485\right) , (533,3062) \left(533, 3062\right) , (533,3063) \left(533, -3063\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  29575 29575  = 5271325^{2} \cdot 7 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  158445661841796875-158445661841796875 = 15975136-1 \cdot 5^{9} \cdot 7^{5} \cdot 13^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  288755302416807 -\frac{2887553024}{16807}  = 121275893-1 \cdot 2^{12} \cdot 7^{-5} \cdot 89^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.14138642879933504725924519552.1413864287993350472592451955
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.34816668425700860171806802520-0.34816668425700860171806802520
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98803115342998050.9880311534299805
Szpiro ratio: σm\sigma_{m} ≈ 5.0189317860178655.018931786017865

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.12761790290469333888150860211.1276179029046933388815086021
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.325531708587454796086540390000.32553170858745479608654039000
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 10 10  = 251 2\cdot5\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.67075382566367529036729230773.6707538256636752903672923077
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.670753826L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3255321.12761810123.670753826\displaystyle 3.670753826 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.325532 \cdot 1.127618 \cdot 10}{1^2} \approx 3.670753826

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   29575.2.a.f

q2q2+q3+2q42q6+q72q9+3q11+2q122q144q16+7q17+4q18+O(q20) q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} + q^{7} - 2 q^{9} + 3 q^{11} + 2 q^{12} - 2 q^{14} - 4 q^{16} + 7 q^{17} + 4 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 468000
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
55 22 IIIIII^{*} additive -1 2 9 0
77 55 I5I_{5} split multiplicative -1 1 5 5
1313 11 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.4.1 5.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[349, 0, 0, 909], [521, 780, 715, 261], [6, 13, 855, 791], [1, 0, 10, 1], [1, 10, 0, 1], [909, 130, 65, 103], [901, 10, 900, 11]]
 
GL(2,Integers(910)).subgroup(gens)
 
Gens := [[349, 0, 0, 909], [521, 780, 715, 261], [6, 13, 855, 791], [1, 0, 10, 1], [1, 10, 0, 1], [909, 130, 65, 103], [901, 10, 900, 11]];
 
sub<GL(2,Integers(910))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 910=25713 910 = 2 \cdot 5 \cdot 7 \cdot 13 , index 4848, genus 11, and generators

(34900909),(521780715261),(613855791),(10101),(11001),(90913065103),(9011090011)\left(\begin{array}{rr} 349 & 0 \\ 0 & 909 \end{array}\right),\left(\begin{array}{rr} 521 & 780 \\ 715 & 261 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 855 & 791 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 909 & 130 \\ 65 & 103 \end{array}\right),\left(\begin{array}{rr} 901 & 10 \\ 900 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[910])K:=\Q(E[910]) is a degree-31701196803170119680 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/910Z)\GL_2(\Z/910\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 5915=57132 5915 = 5 \cdot 7 \cdot 13^{2}
55 additive 1414 169=132 169 = 13^{2}
77 split multiplicative 88 4225=52132 4225 = 5^{2} \cdot 13^{2}
1313 additive 8686 175=527 175 = 5^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 29575w consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 175a2, its twist by 6565.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(65)\Q(\sqrt{65}) Z/5Z\Z/5\Z not in database
33 3.1.140.1 Z/2Z\Z/2\Z not in database
66 6.0.686000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.215306000.3 Z/10Z\Z/10\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/15Z\Z/15\Z not in database
2020 20.0.641953627807088196277618408203125.2 Z/5Z\Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord add split ord add ord ss ord ord ord ord ord ord ord
λ\lambda-invariant(s) 1,6 1 - 2 1 - 1 1,1 1 1 1 3 1 1 1
μ\mu-invariant(s) 0,0 0 - 0 0 - 0 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.