sage:E = EllipticCurve("bz1")
E.isogeny_class()
Elliptic curves in class 29760.bz
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
29760.bz1 |
29760cj4 |
[0,1,0,−26561,−1674945] |
15811147933922/1016955 |
133294325760 |
[2] |
49152 |
1.1922
|
|
29760.bz2 |
29760cj3 |
[0,1,0,−8961,303615] |
607199886722/41558445 |
5447148503040 |
[2] |
49152 |
1.1922
|
|
29760.bz3 |
29760cj2 |
[0,1,0,−1761,−23265] |
9220796644/1946025 |
127534694400 |
[2,2] |
24576 |
0.84561
|
|
29760.bz4 |
29760cj1 |
[0,1,0,239,−2065] |
91765424/174375 |
−2856960000 |
[2] |
12288 |
0.49904
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 29760.bz have
rank 0.
The elliptic curves in class 29760.bz do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.