Properties

Label 29760.bz
Number of curves 44
Conductor 2976029760
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bz1") E.isogeny_class()
 

Elliptic curves in class 29760.bz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29760.bz1 29760cj4 [0,1,0,26561,1674945][0, 1, 0, -26561, -1674945] 15811147933922/101695515811147933922/1016955 133294325760133294325760 [2][2] 4915249152 1.19221.1922  
29760.bz2 29760cj3 [0,1,0,8961,303615][0, 1, 0, -8961, 303615] 607199886722/41558445607199886722/41558445 54471485030405447148503040 [2][2] 4915249152 1.19221.1922  
29760.bz3 29760cj2 [0,1,0,1761,23265][0, 1, 0, -1761, -23265] 9220796644/19460259220796644/1946025 127534694400127534694400 [2,2][2, 2] 2457624576 0.845610.84561  
29760.bz4 29760cj1 [0,1,0,239,2065][0, 1, 0, 239, -2065] 91765424/17437591765424/174375 2856960000-2856960000 [2][2] 1228812288 0.499040.49904 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 29760.bz have rank 00.

Complex multiplication

The elliptic curves in class 29760.bz do not have complex multiplication.

Modular form 29760.2.a.bz

Copy content sage:E.q_eigenform(10)
 
q+q3q5+q9+2q13q15+6q17+4q19+O(q20)q + q^{3} - q^{5} + q^{9} + 2 q^{13} - q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.