Properties

Label 29760.bz
Number of curves $4$
Conductor $29760$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 29760.bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29760.bz1 29760cj4 \([0, 1, 0, -26561, -1674945]\) \(15811147933922/1016955\) \(133294325760\) \([2]\) \(49152\) \(1.1922\)  
29760.bz2 29760cj3 \([0, 1, 0, -8961, 303615]\) \(607199886722/41558445\) \(5447148503040\) \([2]\) \(49152\) \(1.1922\)  
29760.bz3 29760cj2 \([0, 1, 0, -1761, -23265]\) \(9220796644/1946025\) \(127534694400\) \([2, 2]\) \(24576\) \(0.84561\)  
29760.bz4 29760cj1 \([0, 1, 0, 239, -2065]\) \(91765424/174375\) \(-2856960000\) \([2]\) \(12288\) \(0.49904\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 29760.bz have rank \(0\).

Complex multiplication

The elliptic curves in class 29760.bz do not have complex multiplication.

Modular form 29760.2.a.bz

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} + 2 q^{13} - q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.