Show commands:
SageMath
E = EllipticCurve("bz1")
E.isogeny_class()
Elliptic curves in class 29760bz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
29760.bd3 | 29760bz1 | \([0, -1, 0, -6945, 200385]\) | \(141339344329/17141760\) | \(4493609533440\) | \([2]\) | \(55296\) | \(1.1583\) | \(\Gamma_0(N)\)-optimal |
29760.bd2 | 29760bz2 | \([0, -1, 0, -27425, -1532223]\) | \(8702409880009/1120910400\) | \(293839935897600\) | \([2, 2]\) | \(110592\) | \(1.5049\) | |
29760.bd4 | 29760bz3 | \([0, -1, 0, 41695, -8070975]\) | \(30579142915511/124675335000\) | \(-32682891018240000\) | \([4]\) | \(221184\) | \(1.8514\) | |
29760.bd1 | 29760bz4 | \([0, -1, 0, -424225, -106208063]\) | \(32208729120020809/658986840\) | \(172749446184960\) | \([2]\) | \(221184\) | \(1.8514\) |
Rank
sage: E.rank()
The elliptic curves in class 29760bz have rank \(0\).
Complex multiplication
The elliptic curves in class 29760bz do not have complex multiplication.Modular form 29760.2.a.bz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.