Properties

Label 2990.c2
Conductor 29902990
Discriminant 149500149500
j-invariant 2363798675161149500 \frac{2363798675161}{149500}
CM no
Rank 11
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3278x+1756y^2+xy+y=x^3-278x+1756 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3278xz2+1756z3y^2z+xyz+yz^2=x^3-278xz^2+1756z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3359667x+83018574y^2=x^3-359667x+83018574 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -278, 1756])
 
gp: E = ellinit([1, 0, 1, -278, 1756])
 
magma: E := EllipticCurve([1, 0, 1, -278, 1756]);
 
oscar: E = elliptic_curve([1, 0, 1, -278, 1756])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(7,9)(7, 9)1.44221942823665923783468888601.4422194282366592378346888860\infty
(10,3)(10, -3)0033

Integral points

(5,57) \left(-5, 57\right) , (5,53) \left(-5, -53\right) , (7,9) \left(7, 9\right) , (7,17) \left(7, -17\right) , (10,3) \left(10, -3\right) , (10,8) \left(10, -8\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  2990 2990  = 2513232 \cdot 5 \cdot 13 \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  149500149500 = 225313232^{2} \cdot 5^{3} \cdot 13 \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2363798675161149500 \frac{2363798675161}{149500}  = 22537311313123117332^{-2} \cdot 5^{-3} \cdot 7^{3} \cdot 11^{3} \cdot 13^{-1} \cdot 23^{-1} \cdot 173^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.0513481918112288028372374801620.051348191811228802837237480162
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0513481918112288028372374801620.051348191811228802837237480162
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.86746455317457550.8674645531745755
Szpiro ratio: σm\sigma_{m} ≈ 3.5600636005125013.560063600512501

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.44221942823665923783468888601.4422194282366592378346888860
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.08590259436575687928134747193.0859025943657568792813474719
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 2311 2\cdot3\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.96703245016013684349259941512.9670324501601368434925994151
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.967032450L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.0859031.4422196322.967032450\displaystyle 2.967032450 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.085903 \cdot 1.442219 \cdot 6}{3^2} \approx 2.967032450

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2990.2.a.c

qq2+q3+q4+q5q6q7q82q9q10+q12+q13+q14+q15+q163q17+2q18+2q19+O(q20) q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} - 2 q^{9} - q^{10} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} - 3 q^{17} + 2 q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 576
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
55 33 I3I_{3} split multiplicative -1 1 3 3
1313 11 I1I_{1} split multiplicative -1 1 1 1
2323 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.1 3.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4, 3, 9, 7], [16446, 1501, 10465, 2991], [9661, 6, 11043, 19], [16381, 6, 13263, 19], [8971, 6, 8973, 19], [1, 6, 0, 1], [17935, 6, 17934, 7], [3, 4, 8, 11], [7177, 6, 3591, 19], [1, 0, 6, 1]]
 
GL(2,Integers(17940)).subgroup(gens)
 
Gens := [[4, 3, 9, 7], [16446, 1501, 10465, 2991], [9661, 6, 11043, 19], [16381, 6, 13263, 19], [8971, 6, 8973, 19], [1, 6, 0, 1], [17935, 6, 17934, 7], [3, 4, 8, 11], [7177, 6, 3591, 19], [1, 0, 6, 1]];
 
sub<GL(2,Integers(17940))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 17940=22351323 17940 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 23 , index 1616, genus 00, and generators

(4397),(164461501104652991),(966161104319),(1638161326319),(89716897319),(1601),(179356179347),(34811),(71776359119),(1061)\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 16446 & 1501 \\ 10465 & 2991 \end{array}\right),\left(\begin{array}{rr} 9661 & 6 \\ 11043 & 19 \end{array}\right),\left(\begin{array}{rr} 16381 & 6 \\ 13263 & 19 \end{array}\right),\left(\begin{array}{rr} 8971 & 6 \\ 8973 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 17935 & 6 \\ 17934 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 7177 & 6 \\ 3591 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[17940])K:=\Q(E[17940]) is a degree-967948039618560967948039618560 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/17940Z)\GL_2(\Z/17940\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 1495=51323 1495 = 5 \cdot 13 \cdot 23
33 good 22 598=21323 598 = 2 \cdot 13 \cdot 23
55 split multiplicative 66 598=21323 598 = 2 \cdot 13 \cdot 23
1313 split multiplicative 1414 230=2523 230 = 2 \cdot 5 \cdot 23
2323 nonsplit multiplicative 2424 130=2513 130 = 2 \cdot 5 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 2990.c consists of 2 curves linked by isogenies of degree 3.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.5980.1 Z/6Z\Z/6\Z not in database
66 6.6.213847192000.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.3452776762032.1 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
99 9.3.39329285305020750000.2 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1818 18.0.14720001976471940893514381395048810431823872000000.2 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ord split ord ss split ord ord nonsplit ord ord ord ord ord ord
λ\lambda-invariant(s) 2 1 2 1 1,1 2 1 1 1 1 1 1 1 1 1
μ\mu-invariant(s) 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.