Properties

Label 29988.l
Number of curves 22
Conductor 2998829988
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 29988.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29988.l1 29988bm2 [0,0,0,97671,11747554][0, 0, 0, -97671, -11747554] 1609752103216/2106811609752103216/210681 1348611891379213486118913792 [2][2] 9216092160 1.53961.5396  
29988.l2 29988bm1 [0,0,0,6636,149695][0, 0, 0, -6636, -149695] 8077950976/22550678077950976/2255067 90219638103849021963810384 [2][2] 4608046080 1.19311.1931 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 29988.l have rank 11.

Complex multiplication

The elliptic curves in class 29988.l do not have complex multiplication.

Modular form 29988.2.a.l

sage: E.q_eigenform(10)
 
q2q5+2q114q13+q17+4q19+O(q20)q - 2 q^{5} + 2 q^{11} - 4 q^{13} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.