Properties

Label 29988.l
Number of curves $2$
Conductor $29988$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 29988.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29988.l1 29988bm2 \([0, 0, 0, -97671, -11747554]\) \(1609752103216/210681\) \(13486118913792\) \([2]\) \(92160\) \(1.5396\)  
29988.l2 29988bm1 \([0, 0, 0, -6636, -149695]\) \(8077950976/2255067\) \(9021963810384\) \([2]\) \(46080\) \(1.1931\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 29988.l have rank \(1\).

Complex multiplication

The elliptic curves in class 29988.l do not have complex multiplication.

Modular form 29988.2.a.l

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} + 2 q^{11} - 4 q^{13} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.