Properties

Label 29988.t
Number of curves $2$
Conductor $29988$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 29988.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29988.t1 29988t2 \([0, 0, 0, -17275440, 27637166788]\) \(-1272481306550272000/5865429267\) \(-2628206321530583808\) \([3]\) \(881280\) \(2.7377\)  
29988.t2 29988t1 \([0, 0, 0, -129360, 67984756]\) \(-534274048000/4146834123\) \(-1858130950061175552\) \([]\) \(293760\) \(2.1884\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 29988.t have rank \(0\).

Complex multiplication

The elliptic curves in class 29988.t do not have complex multiplication.

Modular form 29988.2.a.t

sage: E.q_eigenform(10)
 
\(q + 5 q^{13} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.