Properties

Label 300.a
Number of curves 22
Conductor 300300
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 300.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
300.a1 300d1 [0,1,0,13,22][0, -1, 0, -13, 22] 131072/9131072/9 1800018000 [2][2] 2424 0.43525-0.43525 Γ0(N)\Gamma_0(N)-optimal
300.a2 300d2 [0,1,0,12,72][0, -1, 0, 12, 72] 5488/815488/81 2592000-2592000 [2][2] 4848 0.088679-0.088679  

Rank

sage: E.rank()
 

The elliptic curves in class 300.a have rank 11.

Complex multiplication

The elliptic curves in class 300.a do not have complex multiplication.

Modular form 300.2.a.a

sage: E.q_eigenform(10)
 
qq34q7+q94q114q17+O(q20)q - q^{3} - 4 q^{7} + q^{9} - 4 q^{11} - 4 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.