Properties

Label 30064.d
Number of curves 11
Conductor 3006430064
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Elliptic curves in class 30064.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30064.d1 30064e1 [0,0,0,443,136726][0, 0, 0, -443, -136726] 2347334289/1970274304-2347334289/1970274304 8070243549184-8070243549184 [][] 2880028800 1.15561.1556 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 30064.d1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
187918791+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T2 1 + 3 T^{2} 1.3.a
55 1+T+5T2 1 + T + 5 T^{2} 1.5.b
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1717 1T+17T2 1 - T + 17 T^{2} 1.17.ab
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30064.d do not have complex multiplication.

Modular form 30064.2.a.d

Copy content sage:E.q_eigenform(10)
 
qq5+q73q9+2q11+4q13+q17+O(q20)q - q^{5} + q^{7} - 3 q^{9} + 2 q^{11} + 4 q^{13} + q^{17} + O(q^{20}) Copy content Toggle raw display