Properties

Label 30400o
Number of curves $2$
Conductor $30400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 30400o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30400.bo2 30400o1 \([0, -1, 0, 467, 1437]\) \(702464/475\) \(-7600000000\) \([2]\) \(24576\) \(0.58464\) \(\Gamma_0(N)\)-optimal
30400.bo1 30400o2 \([0, -1, 0, -2033, 13937]\) \(3631696/1805\) \(462080000000\) \([2]\) \(49152\) \(0.93121\)  

Rank

sage: E.rank()
 

The elliptic curves in class 30400o have rank \(0\).

Complex multiplication

The elliptic curves in class 30400o do not have complex multiplication.

Modular form 30400.2.a.o

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{7} + q^{9} + 4 q^{11} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.